|
Showing 1 - 3 of
3 matches in All Departments
This book presents thermodynamic data on oxides in the system MgO-FeO-Fe2O3-Al2O3-SiO2. These data are produced by a process of assessment that involves the integration of thermochemical (calorimetric) and phase equilibrium data. The latter have been selected from a number of publications in high-pressure research conducted at pressures and temperatures in the range of 1 bar to several Giga Pascals and 300 to 2500 K respectively. A unique feature of the database is that the assessment involves not only the thermodynamic data on pure end member species, but also the data on multicomponent solutions. Since the solution description follows the format used in the popular thermodynamic computational packages such as FACTSAGE, ChemSage and Thermocalc, the database is easy to incorporate in the currently used databases in these packages. The database is highly useful to those working in the field of metallurgy (e.g. slags) and ceramics. It is essential for all those who do thermodynamic modeling of the terrestrial planetary interiors.
This book involves application of the Calphad method for derivation
of a self consistent thermodynamic database for the geologically
important system Mg0- Fe0-Fe203-Alz03-Si02 at pressures and
temperatures of Earth's upper mantle and the transition zone of
that mantle for Earth. The created thermodynamic database
reproduces phase relations at 1 bar and at pressures up to 30 GPa.
The minerals are modelled by compound energy formalism, which gives
realistic descriptions of their Gibbs energy and takes into account
crystal structure data. It incorporates a detailed review of
diverse types of experimental data which are used to derive the
thermodynamic database: phase equilibria, calorimetric stud ies,
and thermoelastic property measurements. The book also contains
tables of thermodynamic properties at 1 bar (enthalpy and Gibbs
energy of formation from the elements, entropy, and heat capacity,
and equation of state data at pressures from 1 bar to 30 GPa.
Mixing parameters of solid solutions are also provided by the book.
Table of Contents Introduction to the Series . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . V Acknowledgments . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . VII Preface . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . XI Co-Authors . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . XIII Vitae of Co-Authors . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . XV CODATA Task Group on
Geothermodynamic Data . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . XXIII Chapter 1. Thermodynamics and
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2
Thermodynamic Modeling . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 1 1. 3 Experimental Data . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 4
Programs and Assessment. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 4 System and Phases . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 5
Chapter 2. Experimental Phase Equilibrium Data . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 7 The Si02 System . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 1 2. 2 The
Fe-0 System . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 8 2. 3 The Fe-Si-0 System . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 2. 4 The Mg0-Si0 System . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . .
This volume is the study of the physical, thermal and structural
properties of disordered solids such as glasses. These solids are
usually referred to as amorphous or vitreous materials. The
properties of these disordered solids are very different from
similar ordered solids and the study of their properties has been
limited by the lack of a suitable model. The Debye model neglects
the effect of frequency on phase velocity by assuming a constant
phase velocity in spite of quite different velocities of
longitudinal and transverse acoustical waves and assumes a common
cut-off frequency for them. Barber and Martin have developed a
function for the lattice heat capacities of isotropic solids that
permits estimates to be made of acoustic cut-off frequencies and
corresponding wavelengths. The function, referred to as the Phonon
Dispersion Model, is superior to the model of Debye. Meanwhile,
transition from supercooled fluids to amorphous or vitreous solids
continues to be one of the most difficult, yet fascinating,
challenges of our time. Binder and Kob have provided a recent
update focusing on the statistical mechanics of the glass
transition and amorphous state of materials. This volume combines
the Phonon Dispersion Model of Barber and the rigor of statistical
mechanics to enhance the understanding of the physical, thermal and
structural properties, as well as the nature of interactive forces
in vitreous and disordered solids. The Phonon Dispersion Model has
been successfully applied to the temperature-heat capacity data of
primitive lattice metals, single and polycrystalline copper,
diamond, vitreous and crystalline alkali di-, tri- and
tetra-silicates, quartz and minerals.
|
You may like...
Higher
Michael Buble
CD
(1)
R482
Discovery Miles 4 820
Loot
Nadine Gordimer
Paperback
(2)
R205
R168
Discovery Miles 1 680
|