Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives. -- Manfred Jaeger, Aalborg Universitet The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. ...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it. -- Marco Gori, Universita degli Studi di Siena Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.
This book constitutes the refereed proceedings of the 8th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2018, held in Siena, Italy, in September 2018. The 29 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 35 submissions. The papers present and discuss the latest research in all areas of neural network- and machine learning-based pattern recognition. They are organized in two sections: learning algorithms and architectures, and applications. Chapter "Bounded Rational Decision-Making with Adaptive Neural Network Priors" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives. -- Manfred Jaeger, Aalborg Universitet The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it. -- Marco Gori, Universita degli Studi di Siena Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.
This book constitutes the refereed proceedings of the 5th INNS IAPR TC3 GIRPR International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2012, held in Trento, Italy, in September 2012. The 21 revised full papers presented were carefully reviewed and selected for inclusion in this volume. They cover a large range of topics in the field of neural network- and machine learning-based pattern recognition presenting and discussing the latest research, results, and ideas in these areas.
This book constitutes thoroughly refereed revised selected papers from the First IAPR TC3 Workshop on Partially Supervised Learning, PSL 2011, held in Ulm, Germany, in September 2011. The 14 papers presented in this volume were carefully reviewed and selected for inclusion in the book, which also includes 3 invited talks. PSL 2011 dealt with methodological issues as well as real-world applications of PSL. The main methodological issues were: combination of supervised and unsupervised learning; diffusion learning; semi-supervised classification, regression, and clustering; learning with deep architectures; active learning; PSL with vague, fuzzy, or uncertain teaching signals; learning, or statistical pattern recognition; and PSL in cognitive systems. Applications of PSL included: image and signal processing; multi-modal information processing; sensor/information fusion; human computer interaction; data mining and Web mining; forensic anthropology; and bioinformatics.
This book constitutes the refereed proceedings of the 10th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2022, held in Dubai, UAE, in November 2022. The 16 revised full papers presented were carefully reviewed and selected from 24 submissions. The conference presents papers on subject such as pattern recognition and machine learning based on artificial neural networks.
This book constitutes the refereed proceedings of the 7th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2016, held in Ulm, Germany, in September 2016. The 25 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 32 submissions for inclusion in this volume. The workshop will act as a major forum for international researchers and practitioners working in all areas of neural network- and machine learning-based pattern recognition to present and discuss the latest research, results, and ideas in these areas.
|
You may like...
Teenage Mutant Ninja Turtles: Out of the…
Megan Fox, Stephen Amell, …
Blu-ray disc
R46
Discovery Miles 460
|