![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
The role played by earth sciences in the scientific community has changed considerably during this century. Since the revolutionary discoveries of global processes such as plate tectonics, there has been an increasing awareness of just how fundamental many of the mechanisms which dominate in these processes depend on the physical properties of the materials of which the earth is made. One of the prime objectives of mineral sciences is now to understand and predict these properties in a truly quantitative manner. The macroscopic properties which are of most immediate interest in this context fall within the conventional definitions of thermodynamics, magnetism, elasticity, dielectric susceptibilities, conductivity etc. These properties reflect the microscopic contributions, at an atomistic level, of harmonic and anharmonic lattice vibrations, ionic and electronic transport as well as a great variety of ordering and clustering phenomena. The advances made by solid state physicists and chemists in defining the underlying phenomena lnvolved in the thermal evolution of materials have stimulated major new research initiatives within the Earth Sciences. Earth Scientists have combined to form active groups within the wider community of solid state and materials scientists working towards a better understanding of those physical processes which govern not only the behaviour of simple model compounds but also that of complex materials like minerals. Concomitant with this change in direction has come an increasing awareness of the need to use the typical working tools of other disciplines.
This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.
The role played by earth sciences in the scientific community has changed considerably during this century. Since the revolutionary discoveries of global processes such as plate tectonics, there has been an increasing awareness of just how fundamental many of the mechanisms which dominate in these processes depend on the physical properties of the materials of which the earth is made. One of the prime objectives of mineral sciences is now to understand and predict these properties in a truly quantitative manner. The macroscopic properties which are of most immediate interest in this context fall within the conventional definitions of thermodynamics, magnetism, elasticity, dielectric susceptibilities, conductivity etc. These properties reflect the microscopic contributions, at an atomistic level, of harmonic and anharmonic lattice vibrations, ionic and electronic transport as well as a great variety of ordering and clustering phenomena. The advances made by solid state physicists and chemists in defining the underlying phenomena lnvolved in the thermal evolution of materials have stimulated major new research initiatives within the Earth Sciences. Earth Scientists have combined to form active groups within the wider community of solid state and materials scientists working towards a better understanding of those physical processes which govern not only the behaviour of simple model compounds but also that of complex materials like minerals. Concomitant with this change in direction has come an increasing awareness of the need to use the typical working tools of other disciplines.
This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.
|
You may like...
Grace and Incarnation
Bruce D. Griffith, Jason R Radcliff
Hardcover
Flight - 100 Greatest Aircraft
Mark Phelps, Flying Magazine Editors of
Hardcover
James Madison - A Captivating Guide to…
Captivating History
Hardcover
Hydrocarbon Fluid Inclusions in…
Vivekanandan Nandakumar, J.L. Jayanthi
Paperback
R3,485
Discovery Miles 34 850
Introductory Dynamical Oceanography
Stephen Pond, George L. Pickard
Paperback
R1,346
Discovery Miles 13 460
|