Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 17 of 17 matches in All Departments
Heterogeneous wireless networking, which is sometimes referred to as the fourth-generation (4G) wireless, is a new frontier in the future wireless communications technology and there has been a growing interest on this topic among researchers and engineers in both academia and industry. This book will include a set of research and survey articles featuring the recent advances in theory and applications of heterogeneous wireless networking technology for the next generation (e.g., fourth generation) wireless communications systems. With the rapid growth in the number of wireless applications, services and devices, using a single wireless technology such as a second generation (2G) and third generation (3G) wireless system would not be efficient to deliver high speed data rate and quality-of-service (QoS) support to mobile users in a seamless way. Fourth generation (4G) wireless systems are devised with the vision of heterogeneity in which a mobile user/device will be able to connect to multiple wireless networks (e.g., WLAN, cellular, WMAN) simultaneously. This book intends to provide a unified view on the state-of-the-art of protocols and architectures for heterogeneous wireless networking. The contributed articles will cover both the theoretical concepts and system-level implementation issues related to design, analysis, and optimization of architectures and protocols for heterogeneous wireless access networks.
This book collects articles featuring recent advances in the theory and applications of wireless mesh networking technology. The contributed articles, from the leading experts in the field, cover both theoretical concepts and system-level implementation issues. The book starts with the essential background on the basic concepts and architectures of wireless mesh networking and then presents advanced level materials in a step-by-step fashion.
This book provides a unified view on the state-of-the-art of cognitive radio technology. It includes a set of research and survey articles featuring the recent advances in theory and applications of cognitive radio technology for the next generation (e.g., fourth generation) wireless communication networks. The contributed articles cover both the theoretical concepts (e.g., information-theoretic analysis) and system-level implementation issues.
Introduction to Network Simulator NS2 is a primer providing materials for NS2 beginners, whether students, professors, or researchers for understanding the architecture of Network Simulator 2 (NS2) and for incorporating simulation modules into NS2. The authors discuss the simulation architecture and the key components of NS2 including simulation-related objects, network objects, packet-related objects, and helper objects. The NS2 modules included within are nodes, links, SimpleLink objects, packets, agents, and applications. Further, the book covers three helper modules: timers, random number generators, and error models. Also included are chapters on summary of debugging, variable and packet tracing, result compilation, and examples for extending NS2. Two appendices provide the details of scripting language Tcl, OTcl and AWK, as well object oriented programming used extensively in NS2.
Deep Reinforcement Learning for Wireless Communications and Networking Comprehensive guide to Deep Reinforcement Learning (DRL) as applied to wireless communication systems Deep Reinforcement Learning for Wireless Communications and Networking presents an overview of the development of DRL while providing fundamental knowledge about theories, formulation, design, learning models, algorithms and implementation of DRL together with a particular case study to practice. The book also covers diverse applications of DRL to address various problems in wireless networks, such as caching, offloading, resource sharing, and security. The authors discuss open issues by introducing some advanced DRL approaches to address emerging issues in wireless communications and networking. Covering new advanced models of DRL, e.g., deep dueling architecture and generative adversarial networks, as well as emerging problems considered in wireless networks, e.g., ambient backscatter communication, intelligent reflecting surfaces and edge intelligence, this is the first comprehensive book studying applications of DRL for wireless networks that presents the state-of-the-art research in architecture, protocol, and application design. Deep Reinforcement Learning for Wireless Communications and Networking covers specific topics such as: Deep reinforcement learning models, covering deep learning, deep reinforcement learning, and models of deep reinforcement learning Physical layer applications covering signal detection, decoding, and beamforming, power and rate control, and physical-layer security Medium access control (MAC) layer applications, covering resource allocation, channel access, and user/cell association Network layer applications, covering traffic routing, network classification, and network slicing With comprehensive coverage of an exciting and noteworthy new technology, Deep Reinforcement Learning for Wireless Communications and Networking is an essential learning resource for researchers and communications engineers, along with developers and entrepreneurs in autonomous systems, who wish to harness this technology in practical applications.
This book constitutes the refereed proceedings of the 6th International Conference on Game Theory for Networks, GameNets 2016, held in Kelowna, Canada, in May 2016. The 13 papers were carefully selected from 26 submissions and cover topics such as algorithmic game theory, game models and theories, game theories in wireless networks, design and analysis of economic games.
This book provides a unified view on the state-of-the-art of cognitive radio technology. It includes a set of research and survey articles featuring the recent advances in theory and applications of cognitive radio technology for the next generation (e.g., fourth generation) wireless communication networks. The contributed articles cover both the theoretical concepts (e.g., information-theoretic analysis) and system-level implementation issues.
This book collects articles featuring recent advances in the theory and applications of wireless mesh networking technology. The contributed articles, from the leading experts in the field, cover both theoretical concepts and system-level implementation issues. The book starts with the essential background on the basic concepts and architectures of wireless mesh networking and then presents advanced level materials in a step-by-step fashion.
Heterogeneous wireless networking, which is sometimes referred to as the fourth-generation (4G) wireless, is a new frontier in the future wireless communications technology and there has been a growing interest on this topic among researchers and engineers in both academia and industry. This book will include a set of research and survey articles featuring the recent advances in theory and applications of heterogeneous wireless networking technology for the next generation (e.g., fourth generation) wireless communications systems. With the rapid growth in the number of wireless applications, services and devices, using a single wireless technology such as a second generation (2G) and third generation (3G) wireless system would not be efficient to deliver high speed data rate and quality-of-service (QoS) support to mobile users in a seamless way. Fourth generation (4G) wireless systems are devised with the vision of heterogeneity in which a mobile user/device will be able to connect to multiple wireless networks (e.g., WLAN, cellular, WMAN) simultaneously. This book intends to provide a unified view on the state-of-the-art of protocols and architectures for heterogeneous wireless networking. The contributed articles will cover both the theoretical concepts and system-level implementation issues related to design, analysis, and optimization of architectures and protocols for heterogeneous wireless access networks.
Covering the fundamental theory together with the state of the art in research and development, this practical guide provides the techniques needed to design, analyze, and optimize device-to-device (D2D) communications in wireless networking. With an ever-increasing demand for higher data rate wireless access, D2D communication is set to become a key feature supported by next generation cellular networks. This book introduces D2D-based wireless communications from the physical, MAC, network, and application layer perspectives, providing all the key background information before moving on to discuss real-world applications as well as potential future developments. Key topics are discussed in detail, such as dynamic resource sharing (for example of spectrum and power) between cellular and ad hoc D2D communications to accommodate larger volumes of traffic and provide better service to users. Readers will understand the practical challenges of resource management, optimization, security, standardization, and network topology, and learn how the design principles are applied in practice.
Learn the fundamentals of architecture design, protocol optimization, and application development for wireless-powered communication networks with this authoritative guide. Readers will gain a detailed understanding of the issues surrounding architecture and protocol design, with key topics covered including relay-based energy harvesting systems, multiple-antenna systems for simultaneous wireless information and power transfer (SWIPT), performance modeling and analysis, and ambient wireless energy harvesting based cellular systems. Current applications of energy harvesting and transfer in different wireless networking scenarios are discussed, aiding the understanding of practical system development and implementation issues from an engineering perspective. The first book to provide a unified view of energy harvesting and wireless power transfer networks from a communications perspective, this is an essential text for researchers working on wireless communication networks and wireless systems, RF engineers, and wireless application developers.
A self-contained guide to the state-of-the-art in cooperative communications and networking techniques for next generation cellular wireless systems, this comprehensive book provides a succinct understanding of the theory, fundamentals and techniques involved in achieving efficient cooperative wireless communications in cellular wireless networks. It consolidates the essential information, addressing both theoretical and practical aspects of cooperative communications and networking in the context of cellular design. This one-stop resource covers the basics of cooperative communications techniques for cellular systems, advanced transceiver design, relay-based cellular networks, and game-theoretic and micro-economic models for protocol design in cooperative cellular wireless networks. Details of ongoing standardization activities are also included. With contributions from experts in the field divided into five distinct sections, this easy-to-follow book delivers the background needed to develop and implement cooperative mechanisms for cellular wireless networks. Professor Ekram Hossain discusses the book:
Do you need to design efficient wireless communications systems? This unique text provides detailed coverage of radio resource allocation problems in wireless networks and the techniques that can be used to solve them. Covering basic principles and mathematical algorithms, and with a particular focus on power control and channel allocation, you will learn how to model, analyze, and optimize the allocation of resources in both physical and data link layers, and for a range of different network types. Both established and emerging networks are considered, including CDMA and OFDMA wireless networks, relay-based wireless networks, and cognitive radio networks. Numerous exercises help you put knowledge into practice, and provide the tools needed to address some of the current research problems in the field. This is an essential reference whether you are a graduate student, researcher or industry professional working in the field of wireless communication networks.
The importance of reducing energy costs, reducing CO2 emissions and protecting the environment are leading to an increased focus on green, energy-efficient approaches to the design of next-generation wireless networks. Presenting state-of-the-art research on green radio communications and networking technology by leaders in the field, this book is invaluable for researchers and professionals working in wireless communication. Summarizing existing and ongoing research, the book explores communication architectures and models, physical communications techniques, base station power-management techniques, wireless access techniques for green radio networks, and green radio test-bed, experimental results and standardization activities. Throughout, theoretical results are blended with practical insights and coverage of deployment issues. It serves as a one-stop reference for key concepts and design techniques for energy-efficient communications and networking and provides information essential for the design of future-generation cellular wireless systems.
Are you involved in designing the next generation of wireless networks? With spectrum becoming an ever scarcer resource, it is critical that new systems utilize all available frequency bands as efficiently as possible. The revolutionary technology presented in this book will be at the cutting edge of future wireless communications. Dynamic Spectrum Access and Management in Cognitive Radio Networks provides you with an all-inclusive introduction to this emerging technology, outlining the fundamentals of cognitive radio-based wireless communication and networking, spectrum sharing models, and the requirements for dynamic spectrum access. In addition to the different techniques and their applications in designing dynamic spectrum access methods, you ll also find state-of-the-art dynamic spectrum access schemes, including classifications of the different schemes and the technical details of each scheme. This is a perfect introduction for graduate students and researchers, as well as a useful self-study guide for practitioners.
The smart grid will transform the way power is delivered, consumed and accounted for. Adding intelligence through the newly networked grid will increase reliability and power quality, improve responsiveness, increase efficiency and provide a platform for new applications. This one-stop reference covers the state-of-the-art theory, key strategies, protocols, applications, deployment aspects and experimental studies of communication and networking technologies for the smart grid. Through the book's twenty chapters, a team of expert authors cover topics ranging from architectures and models through to integration of plug-in hybrid vehicles and security. Essential information is provided for researchers to make progress in the field and to allow power systems engineers to optimize communication systems for the smart grid.
|
You may like...
|