0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Android Malware Detection using Machine Learning - Data-Driven Fingerprinting and Threat Intelligence (Hardcover, 1st ed.... Android Malware Detection using Machine Learning - Data-Driven Fingerprinting and Threat Intelligence (Hardcover, 1st ed. 2021)
ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, Djedjiga Mouheb
R4,805 Discovery Miles 48 050 Ships in 12 - 17 working days

The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures. First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Based on this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware. The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well.

Android Malware Detection using Machine Learning - Data-Driven Fingerprinting and Threat Intelligence (Paperback, 1st ed.... Android Malware Detection using Machine Learning - Data-Driven Fingerprinting and Threat Intelligence (Paperback, 1st ed. 2021)
ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, Djedjiga Mouheb
R5,174 Discovery Miles 51 740 Ships in 10 - 15 working days

The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures. First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Based on this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware. The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
First Dutch Brands Wire Wall Basket With…
R110 Discovery Miles 1 100
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Raz Tech Laptop Security Chain Cable…
R299 R169 Discovery Miles 1 690
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Aerolatte Cappuccino Art Stencils (Set…
R110 R95 Discovery Miles 950
The Fabelmans
Steven Spielberg DVD R133 Discovery Miles 1 330
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Joseph Joseph Index Mini (Graphite)
R642 Discovery Miles 6 420
Alcolin Cold Glue (500ml)
R128 R101 Discovery Miles 1 010

 

Partners