Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The international workshop on which this proceedings volume is based on brought together leading researchers in the field of elliptic and parabolic equations. Particular emphasis was put on the interaction between well-established scientists and emerging young mathematicians, as well as on exploring new connections between pure and applied mathematics. The volume contains material derived after the workshop taking up the impetus to continue collaboration and to incorporate additional new results and insights.
This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. Nine up-to-date contributions have been written on invitation by experts in the respective fields. The book is the third volume of the subseries "Advances in Partial Differential Equations."
This volume highlights the analysis on noncompact and singular manifolds within the framework of the cone calculus with asymptotics. The three papers at the beginning deal with parabolic equations, a topic relevant for many applications. The first article presents a calculus for pseudodifferential operators with an anisotropic analytic parameter. The subsequent paper develops an algebra of Mellin operators on the infinite space-time cylinder. It is shown how timelike infinity can be treated as a conical singularity. In the third text - the central article of this volume - the authors use these results to obtain precise information on the long-time asymptotics of solutions to parabolic equations and to construct inverses within the calculus. There follows a factorization theorem for meromorphic symbols: It is proven that each of these can be decomposed into a holomorphic invertible part and a smoothing part containing all the meromorphic information. It is expected that this result will be important for applications in the analysis of nonlinear hyperbolic equations. The final article addresses the question of the coordinate invariance of the Mellin calculus with asymptotics.
The international workshop on which this proceedings volume is based on brought together leading researchers in the field of elliptic and parabolic equations. Particular emphasis was put on the interaction between well-established scientists and emerging young mathematicians, as well as on exploring new connections between pure and applied mathematics. The volume contains material derived after the workshop taking up the impetus to continue collaboration and to incorporate additional new results and insights.
This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. Nine up-to-date contributions have been written on invitation by experts in the respective fields. The book is the third volume of the subseries "Advances in Partial Differential Equations."
Partial differential equations constitute an integral part of mathematics. They lie at the interface of areas as diverse as differential geometry, functional analysis, or the theory of Lie groups and have numerous applications in the applied sciences. A wealth of methods has been devised for their analysis. Over the past decades, operator algebras in connection with ideas and structures from geometry, topology, and theoretical physics have contributed a large variety of particularly useful tools. One typical example is the analysis on singular configurations, where elliptic equations have been studied successfully within the framework of operator algebras with symbolic structures adapted to the geometry of the underlying space. More recently, these techniques have proven to be useful also for studying parabolic and hyperbolic equations. Moreover, it turned out that many seemingly smooth, noncompact situations can be handled with the ideas from singular analysis. The three papers at the beginning of this volume highlight this aspect. They deal with parabolic equations, a topic relevant for many applications. The first article prepares the ground by presenting a calculus for pseudo differential operators with an anisotropic analytic parameter. In the subsequent paper, an algebra of Mellin operators on the infinite space-time cylinder is constructed. It is shown how timelike infinity can be treated as a conical singularity.
|
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
|