Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Advanced space exploration is performed by unmanned missions with integrated autonomy in both flight and ground systems. Risk and feasibility are major factors supporting the use of unmanned craft and the use of automation and robotic technologies where possible. Autonomy in space helps to increase the amount of science data returned from missions, perform new science, and reduce mission costs. Elicitation and expression of autonomy requirements is one of the most significant challenges the autonomous spacecraft engineers need to overcome today. This book discusses the Autonomy Requirements Engineering (ARE) approach, intended to help software engineers properly elicit, express, verify, and validate autonomy requirements. Moreover, a comprehensive state-of-the-art of software engineering for aerospace is presented to outline the problems handled by ARE along with a proof-of-concept case study on the ESA's BepiColombo Mission demonstrating the ARE's ability to handle autonomy requirements.
This book constitutes the refereed post-conference proceedings of the International Conferences ICCASA and ICTCC 2017, held in November 2017 in Tam Ky City, Vietnam. The 23 revised full papers presented were carefully selected from 31 submissions. The papers of ICCASA cover a wide spectrum in the area of context-aware-systems. CAS is characterized by its self- facets such as self-organization, self-configuration, self-healing, self-optimization, self-protection used to dynamically control computing and networking functions. The papers of ICTCC cover formal methods for self-adaptive systems and discuss natural approaches and techniques for computation and communication.
Advanced space exploration is performed by unmanned missions with integrated autonomy in both flight and ground systems. Risk and feasibility are major factors supporting the use of unmanned craft and the use of automation and robotic technologies where possible. Autonomy in space helps to increase the amount of science data returned from missions, perform new science, and reduce mission costs. Elicitation and expression of autonomy requirements is one of the most significant challenges the autonomous spacecraft engineers need to overcome today. This book discusses the Autonomy Requirements Engineering (ARE) approach, intended to help software engineers properly elicit, express, verify, and validate autonomy requirements. Moreover, a comprehensive state-of-the-art of software engineering for aerospace is presented to outline the problems handled by ARE along with a proof-of-concept case study on the ESA's BepiColombo Mission demonstrating the ARE's ability to handle autonomy requirements.
This book constitutes the thoroughly refereed post-conference proceedings of the International Conference on Nature of Computation and Communication, ICTCC 2014, held in November 2014 in Ho Chi Minh City, Vietnam. The 34 revised full papers presented were carefully reviewed and selected from over 100 submissions. The papers cover formal methods for self-adaptive systems and discuss natural approaches and techniques for computation and communication.
This book constitutes the thoroughly refereed proceedings of the Second International Conference on Context-Aware Systems and Applications, ICCASA 2013, held in Phu Quoc Island, Vietnam in November 2013. The 36 revised full papers presented were carefully selected and reviewed from over 100 submissions and cover a wide spectrum of issues in the area of context-aware systems (CAS) and context-based recommendation systems.
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
|