|
Showing 1 - 1 of
1 matches in All Departments
Advances in Domain Adaptation Theory gives current,
state-of-the-art results on transfer learning, with a particular
focus placed on domain adaptation from a theoretical point-of-view.
The book begins with a brief overview of the most popular concepts
used to provide generalization guarantees, including sections on
Vapnik-Chervonenkis (VC), Rademacher, PAC-Bayesian, Robustness and
Stability based bounds. In addition, the book explains domain
adaptation problem and describes the four major families of
theoretical results that exist in the literature, including the
Divergence based bounds. Next, PAC-Bayesian bounds are discussed,
including the original PAC-Bayesian bounds for domain adaptation
and their updated version. Additional sections present
generalization guarantees based on the robustness and stability
properties of the learning algorithm.
|
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.