0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Vibrational Properties of Defective Oxides and 2D Nanolattices - Insights from First-Principles Simulations (Paperback,... Vibrational Properties of Defective Oxides and 2D Nanolattices - Insights from First-Principles Simulations (Paperback, Softcover reprint of the original 1st ed. 2014)
Emilio Scalise
R3,409 Discovery Miles 34 090 Ships in 10 - 15 working days

Ge and III–V compounds, semiconductors with high carrier mobilities, are candidates to replace Si as the channel in MOS devices. 2D materials – like graphene and MoS_2 – are also envisioned to replace Si in the future. This thesis is devoted to the first-principles modeling of the vibrational properties of these novel channel materials. The first part of the thesis focuses on the vibrational properties of various oxides on Ge, making it possible to identify the vibrational signature of specific defects which could hamper the proper functioning of MOSFETs. The second part of the thesis reports on the electronic and vibrational properties of novel 2D materials like silicene and germanene, the Si and Ge 2D counterparts of graphene. The interaction of these 2D materials with metallic and non-metallic substrates is investigated. It was predicted, for the first time, and later experimentally confirmed, that silicene could be grown on a non-metallic template like MoS_2, a breakthrough that could open the door to the possible use of silicene in future nanoelectronic devices.

Vibrational Properties of Defective Oxides and 2D Nanolattices - Insights from First-Principles Simulations (Hardcover, 2014... Vibrational Properties of Defective Oxides and 2D Nanolattices - Insights from First-Principles Simulations (Hardcover, 2014 ed.)
Emilio Scalise
R3,653 Discovery Miles 36 530 Ships in 10 - 15 working days

Ge and III-V compounds, semiconductors with high carrier mobilities, are candidates to replace Si as the channel in MOS devices. 2D materials - like graphene and MoS_2 - are also envisioned to replace Si in the future. This thesis is devoted to the first-principles modeling of the vibrational properties of these novel channel materials. The first part of the thesis focuses on the vibrational properties of various oxides on Ge, making it possible to identify the vibrational signature of specific defects which could hamper the proper functioning of MOSFETs. The second part of the thesis reports on the electronic and vibrational properties of novel 2D materials like silicene and germanene, the Si and Ge 2D counterparts of graphene. The interaction of these 2D materials with metallic and non-metallic substrates is investigated. It was predicted, for the first time, and later experimentally confirmed, that silicene could be grown on a non-metallic template like MoS_2, a breakthrough that could open the door to the possible use of silicene in future nanoelectronic devices.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Tower Sign - Beware Of The Dog…
R60 R46 Discovery Miles 460
Jurassic Park Trilogy Collection
Sam Neill, Laura Dern, … Blu-ray disc  (1)
R311 Discovery Miles 3 110
Dig & Discover: Ancient Egypt - Excavate…
Hinkler Pty Ltd Kit R263 Discovery Miles 2 630
Dala Craft Pom Poms - Assorted Colours…
R36 Discovery Miles 360
Cadac Digital Meat Thermometer
R242 Discovery Miles 2 420
Shield MicroFibre 2 in 1 Chenille Wash…
R55 Discovery Miles 550
Cricut Joy Machine
 (6)
R4,751 Discovery Miles 47 510
Bestway Swim Ring (56cm)
R50 R45 Discovery Miles 450
Sony PlayStation 5 HD Camera (Glacier…
R1,299 R1,229 Discovery Miles 12 290
Farm Killings In South Africa
Nechama Brodie Paperback R335 R288 Discovery Miles 2 880

 

Partners