0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Laser Filamentation - Mathematical Methods and Models (Hardcover, 1st ed. 2016): Andre D. Bandrauk, Emmanuel Lorin, Jerome V.... Laser Filamentation - Mathematical Methods and Models (Hardcover, 1st ed. 2016)
Andre D. Bandrauk, Emmanuel Lorin, Jerome V. Moloney
R3,324 Discovery Miles 33 240 Ships in 10 - 15 working days

This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear nonperturbative regime, Laser Pulse Filamentation, was observed by Mourou and Braun in 1995, as the propagation of pulses over large distances with narrow and intense cones. This observation has led to intensive investigation in physics and applied mathematics of new effects such as self-transformation of these pulses into white light, intensity clamping, and multiple filamentation, as well as to potential applications to wave guide writing, atmospheric remote sensing, lightning guiding, and military long-range weapons. The increasing power of high performance computers and the mathematical modelling and simulation of photonic systems has enabled many new areas of research. With contributions by theorists and mathematicians, supplemented by active experimentalists who are experts in the field of nonlinear laser molecule interaction and propagation, Laser Filamentation sheds new light on scientific and industrial applications of modern lasers.

Laser Filamentation - Mathematical Methods and Models (Paperback, Softcover reprint of the original 1st ed. 2016): Andre D.... Laser Filamentation - Mathematical Methods and Models (Paperback, Softcover reprint of the original 1st ed. 2016)
Andre D. Bandrauk, Emmanuel Lorin, Jerome V. Moloney
R3,208 Discovery Miles 32 080 Ships in 18 - 22 working days

This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear nonperturbative regime, Laser Pulse Filamentation, was observed by Mourou and Braun in 1995, as the propagation of pulses over large distances with narrow and intense cones. This observation has led to intensive investigation in physics and applied mathematics of new effects such as self-transformation of these pulses into white light, intensity clamping, and multiple filamentation, as well as to potential applications to wave guide writing, atmospheric remote sensing, lightning guiding, and military long-range weapons. The increasing power of high performance computers and the mathematical modelling and simulation of photonic systems has enabled many new areas of research. With contributions by theorists and mathematicians, supplemented by active experimentalists who are experts in the field of nonlinear laser molecule interaction and propagation, Laser Filamentation sheds new light on scientific and industrial applications of modern lasers.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Advanced Lung Cancer: Radical Surgical…
Raja Flores Hardcover R1,666 Discovery Miles 16 660
Acute Leukemia, An Issue of…
Martin Tallman Hardcover R1,669 Discovery Miles 16 690
Tumors and Tumor-Like Lesions of the…
Thomas M. Ulbright, Chia-Sui Kao, … Hardcover R7,098 R5,816 Discovery Miles 58 160
Targeted Cancer Imaging - Design and…
Mehdi Azizi, Hadi Kokabi, … Paperback R2,614 Discovery Miles 26 140
Biomarkers in Cancer Detection and…
Ranbir Chander Sobti, Masatoshi Watanabe, … Paperback R3,268 Discovery Miles 32 680
Hodgkin's Lymphoma, An Issue of…
Volker Diehl Book R1,669 Discovery Miles 16 690
Lung Cancer, An Issue of…
Roy S. Herbst, Daniel Morgensztern Hardcover R2,125 Discovery Miles 21 250
Multiple Myeloma, An Issue of…
Kenneth C. Anderson Hardcover R1,669 Discovery Miles 16 690
NMR Metabolomics in Cancer Research
Miroslava Cuperlovic-Culf Hardcover R4,738 Discovery Miles 47 380
The Treatment of Myeloid Malignancies…
Ann Mullally Hardcover R2,127 Discovery Miles 21 270

 

Partners