0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Laser Filamentation - Mathematical Methods and Models (Hardcover, 1st ed. 2016): Andre D. Bandrauk, Emmanuel Lorin, Jerome V.... Laser Filamentation - Mathematical Methods and Models (Hardcover, 1st ed. 2016)
Andre D. Bandrauk, Emmanuel Lorin, Jerome V. Moloney
R3,371 Discovery Miles 33 710 Ships in 12 - 17 working days

This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear nonperturbative regime, Laser Pulse Filamentation, was observed by Mourou and Braun in 1995, as the propagation of pulses over large distances with narrow and intense cones. This observation has led to intensive investigation in physics and applied mathematics of new effects such as self-transformation of these pulses into white light, intensity clamping, and multiple filamentation, as well as to potential applications to wave guide writing, atmospheric remote sensing, lightning guiding, and military long-range weapons. The increasing power of high performance computers and the mathematical modelling and simulation of photonic systems has enabled many new areas of research. With contributions by theorists and mathematicians, supplemented by active experimentalists who are experts in the field of nonlinear laser molecule interaction and propagation, Laser Filamentation sheds new light on scientific and industrial applications of modern lasers.

Laser Filamentation - Mathematical Methods and Models (Paperback, Softcover reprint of the original 1st ed. 2016): Andre D.... Laser Filamentation - Mathematical Methods and Models (Paperback, Softcover reprint of the original 1st ed. 2016)
Andre D. Bandrauk, Emmanuel Lorin, Jerome V. Moloney
R3,391 Discovery Miles 33 910 Ships in 10 - 15 working days

This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear nonperturbative regime, Laser Pulse Filamentation, was observed by Mourou and Braun in 1995, as the propagation of pulses over large distances with narrow and intense cones. This observation has led to intensive investigation in physics and applied mathematics of new effects such as self-transformation of these pulses into white light, intensity clamping, and multiple filamentation, as well as to potential applications to wave guide writing, atmospheric remote sensing, lightning guiding, and military long-range weapons. The increasing power of high performance computers and the mathematical modelling and simulation of photonic systems has enabled many new areas of research. With contributions by theorists and mathematicians, supplemented by active experimentalists who are experts in the field of nonlinear laser molecule interaction and propagation, Laser Filamentation sheds new light on scientific and industrial applications of modern lasers.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Bug-A-Salt 3.0 Black Fly
 (1)
R999 Discovery Miles 9 990
Playseat Evolution Racing Chair (Black)
 (3)
R8,999 Discovery Miles 89 990
Joseph Joseph Index Mini (Graphite)
R642 Discovery Miles 6 420
Sylvanian Families - Walnut Squirrel…
R749 R579 Discovery Miles 5 790
CyberPulse Gaming Chair
R3,999 R3,278 Discovery Miles 32 780
Bostik Clear (50ml)
R57 Discovery Miles 570
Mixtape Hand Held Car Vacuum Cleaner
R320 R198 Discovery Miles 1 980
Bantex @School Childrens Flat Brush Set…
R33 Discovery Miles 330
Jabra Elite 5 Hybrid ANC True Wireless…
R2,899 R2,245 Discovery Miles 22 450
Braai
Reuben Riffel Paperback R495 R359 Discovery Miles 3 590

 

Partners