Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book provides the reader with a detailed and captivating account of the story where, for the first time, physicists ventured into proposing a new force of nature beyond the four known ones - the electromagnetic, weak and strong forces, and gravitation - based entirely on the reanalysis of existing experimental data. Back in 1986, Ephraim Fischbach, Sam Aronson, Carrick Talmadge and their collaborators proposed a modification of Newton's Law of universal gravitation. Underlying this proposal were three tantalizing pieces of evidence: 1) an energy dependence of the CP (particle-antiparticle and reflection symmetry) parameters, 2) differences between the measurements of G, the universal gravitational constant, in laboratories and in mineshafts, and 3) a reanalysis of the Eoetvos experiment, which had previously been used to show that the gravitational mass of an object and its inertia mass were equal to approximately one part in a billion. The reanalysis revealed that, contrary to Galileo's position, the force of gravity was in fact very slightly different for different substances. The resulting Fifth Force hypothesis included this composition dependence and also added a small distance dependence to the inverse-square gravitational force. Over the next four years numerous experiments were performed to test the hypothesis. By 1990 there was overwhelming evidence that the Fifth Force, as initially proposed, did not exist. This book discusses how the Fifth Force hypothesis came to be proposed and how it went on to become a showcase of discovery, pursuit and justification in modern physics, prior to its demise. In this new and significantly expanded edition, the material from the first edition is complemented by two essays, one containing Fischbach's personal reminiscences of the proposal, and a second on the ongoing history and impact of the Fifth Force hypothesis from 1990 to the present.
This book provides the reader with a detailed and captivating account of the story where, for the first time, physicists ventured into proposing a new force of nature beyond the four known ones - the electromagnetic, weak and strong forces, and gravitation - based entirely on the reanalysis of existing experimental data. Back in 1986, Ephraim Fischbach, Sam Aronson, Carrick Talmadge and their collaborators proposed a modification of Newton's Law of universal gravitation. Underlying this proposal were three tantalizing pieces of evidence: 1) an energy dependence of the CP (particle-antiparticle and reflection symmetry) parameters, 2) differences between the measurements of G, the universal gravitational constant, in laboratories and in mineshafts, and 3) a reanalysis of the Eoetvos experiment, which had previously been used to show that the gravitational mass of an object and its inertia mass were equal to approximately one part in a billion. The reanalysis revealed that, contrary to Galileo's position, the force of gravity was in fact very slightly different for different substances. The resulting Fifth Force hypothesis included this composition dependence and also added a small distance dependence to the inverse-square gravitational force. Over the next four years numerous experiments were performed to test the hypothesis. By 1990 there was overwhelming evidence that the Fifth Force, as initially proposed, did not exist. This book discusses how the Fifth Force hypothesis came to be proposed and how it went on to become a showcase of discovery, pursuit and justification in modern physics, prior to its demise. In this new and significantly expanded edition, the material from the first edition is complemented by two essays, one containing Fischbach's personal reminiscences of the proposal, and a second on the ongoing history and impact of the Fifth Force hypothesis from 1990 to the present.
A history of the attempts to test the predictions of Newtonian Gravity, describing in detail recent experimental efforts to verify both the inverse-square law and the Equivalence Principle. Interest in these questions has increased in recent years, as it has become recognised that deviations from Newtonian gravity could be a signal for a new fundamental force in nature. This is the first book devoted entirely to this subject, and will thus be useful to both graduate students and researchers interested in this field. It describes the ideas that underlie searches for such deviations, focusing on macroscopic tests. A comprehensive bibliography of some 450 entries supplements the text.
|
You may like...
Smart-Tech Society - Convenience…
Mark Whitehead, William G.A. Collier
Hardcover
R2,732
Discovery Miles 27 320
ICTs for Global Development and…
Jacques Steyn, Jean-Paul Van Belle, …
Hardcover
R4,776
Discovery Miles 47 760
|