![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
Economic and financial time series feature important seasonal fluctuations. Despite their regular and predictable patterns over the year, month or week, they pose many challenges to economists and econometricians. This book provides a thorough review of the recent developments in the econometric analysis of seasonal time series. It is designed for an audience of specialists in economic time series analysis and advanced graduate students. It is the most comprehensive and balanced treatment of the subject since the mid-1980s.
This book, and its companion volume in the Econometric Society Monographs series (ESM number 32), present a collection of papers by Clive W. J. Granger. His contributions to economics and econometrics, many of them seminal, span more than four decades and touch on all aspects of time series analysis. The papers assembled in this volume explore topics in causality, integration and cointegration, and long memory. Those in the companion volume investigate themes in causality, integration and cointegration, and long memory. The two volumes contain the original articles as well as an introduction written by the editors.
This book, and its companion volume, present a collection of papers by Clive W.J. Granger. His contributions to economics and econometrics, many of them seminal, span more than four decades and touch on all aspects of time series analysis. The papers assembled in this volume explore topics in spectral analysis, seasonality, nonlinearity, methodology, and forecasting. Those in the companion volume investigate themes in causality, integration and cointegration, and long memory. The two volumes contain the original articles as well as an introduction written by the editors.
This book, and its companion volume, present a collection of papers by Clive W.J. Granger. His contributions to economics and econometrics, many of them seminal, span more than four decades and touch on all aspects of time series analysis. The papers assembled in this volume explore topics in causality, integration and cointegration, and long memory. Those in the companion volume investigate themes in causality, integration and cointegration, and long memory. The two volumes contain the original articles as well as an introduction written by the editors.
Economic and financial time series feature important seasonal fluctuations. Despite their regular and predictable patterns over the year, month or week, they pose many challenges to economists and econometricians. This book provides a thorough review of the recent developments in the econometric analysis of seasonal time series. It is designed for an audience of specialists in economic time series analysis and advanced graduate students. It is the most comprehensive and balanced treatment of the subject since the mid-1980s.
Economic forecasting is a key ingredient of decision making both in the public and in the private sector. Because economic outcomes are the result of a vast, complex, dynamic and stochastic system, forecasting is very difficult and forecast errors are unavoidable. Because forecast precision and reliability can be enhanced by the use of proper econometric models and methods, this innovative book provides an overview of both theory and applications. Undergraduate and graduate students learning basic and advanced forecasting techniques will be able to build from strong foundations, and researchers in public and private institutions will have access to the most recent tools and insights. Readers will gain from the frequent examples that enhance understanding of how to apply techniques, first by using stylized settings and then by real data applications-focusing on macroeconomic and financial topics. This is first and foremost a book aimed at applying time series methods to solve real-world forecasting problems. Applied Economic Forecasting using Time Series Methods starts with a brief review of basic regression analysis with a focus on specific regression topics relevant for forecasting, such as model specification errors, dynamic models and their predictive properties as well as forecast evaluation and combination. Several chapters cover univariate time series models, vector autoregressive models, cointegration and error correction models, and Bayesian methods for estimating vector autoregressive models. A collection of special topics chapters study Threshold and Smooth Transition Autoregressive (TAR and STAR) models, Markov switching regime models, state space models and the Kalman filter, mixed frequency data models, nowcasting, forecasting using large datasets and, finally, volatility models. There are plenty of practical applications in the book and both EViews and R code are available online.
This book, and its companion volume in the Econometric Society Monographs series (ESM number 33), present a collection of papers by Clive W. J. Granger. His contributions to economics and econometrics, many of them seminal, span more than four decades and touch on all aspects of time series analysis. The papers assembled in this volume explore topics in spectral analysis, seasonality, nonlinearity, methodology, and forecasting. Those in the companion volume investigate themes in causality, integration and cointegration, and long memory. The two volumes contain the original articles as well as an introduction written by the editors.
|
![]() ![]() You may like...
Heart Of A Strong Woman - From Daveyton…
Xoliswa Nduneni-Ngema, Fred Khumalo
Paperback
|