![]() |
![]() |
Your cart is empty |
||
Showing 1 - 15 of 15 matches in All Departments
This work is devoted to a study of various relations between non-classical logics and fuzzy sets. This volume is aimed at all those who are interested in a deeper understanding of the mathematical foundations of fuzzy set theory, particularly in intuitionistic logic, Lukasiewicz logic, monoidal logic, fuzzy logic and topos-like categories. The tutorial nature of the longer chapters, the comprehensive bibliography and index should make it suitable as a valuable and important reference for graduate students as well as research workers in the field of non-classical logics. The book is arranged in three parts: part A presents the most recent developments in the theory of Heyting algebras, MV-algebras, quantales and GL-monoids; part B gives a coherent and current account of topos-like categories for fuzzy set theory based on Heyting algebra valued sets, quantal sets of M-valued sets; part C addresses general aspects of non-classical logics including epistemological problems as well as recursive properties of fuzzy logic.
Fuzzy Sets, Logics and Reasoning about Knowledge reports recent results concerning the genuinely logical aspects of fuzzy sets in relation to algebraic considerations, knowledge representation and commonsense reasoning. It takes a state-of-the-art look at multiple-valued and fuzzy set-based logics, in an artificial intelligence perspective. The papers, all of which are written by leading contributors in their respective fields, are grouped into four sections. The first section presents a panorama of many-valued logics in connection with fuzzy sets. The second explores algebraic foundations, with an emphasis on MV algebras. The third is devoted to approximate reasoning methods and similarity-based reasoning. The fourth explores connections between fuzzy knowledge representation, especially possibilistic logic and prioritized knowledge bases. Readership: Scholars and graduate students in logic, algebra, knowledge representation, and formal aspects of artificial intelligence.
This book aims to present, in a unified approach, a series of mathematical results con cerning triangular norm-based measures and a class of cooperative games with Juzzy coalitions. Our approach intends to emphasize that triangular norm-based measures are powerful tools in exploring the coalitional behaviour in 'such games. They not and simplify some technical aspects of the already classical axiomatic the only unify ory of Aumann-Shapley values, but also provide new perspectives and insights into these results. Moreover, this machinery allows us to obtain, in the game theoretical context, new and heuristically meaningful information, which has a significant impact on balancedness and equilibria analysis in a cooperative environment. From a formal point of view, triangular norm-based measures are valuations on subsets of a unit cube [0, 1]X which preserve dual binary operations induced by trian gular norms on the unit interval [0, 1]. Triangular norms (and their dual conorms) are algebraic operations on [0,1] which were suggested by MENGER [1942] and which proved to be useful in the theory of probabilistic metric spaces (see also [WALD 1943]). The idea of a triangular norm-based measure was implicitly used under various names: vector integrals [DVORETZKY, WALD & WOLFOWITZ 1951], prob abilities oj Juzzy events [ZADEH 1968], and measures on ideal sets [AUMANN & SHAPLEY 1974, p. 152].
This volume gives a state of the art of triangular norms which can
be used for the generalization of several mathematical concepts,
such as conjunction, metric, measure, etc. 16 chapters written by
leading experts provide a state of the art overview of theory and
applications of triangular norms and related operators in fuzzy
logic, measure theory, probability theory, and probabilistic metric
spaces.
This volume summarizes recent developments in the topological and algebraic structures in fuzzy sets and may be rightly viewed as a continuation of the stan dardization of the mathematics of fuzzy sets established in the "Handbook," namely the Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Volume 3 of The Handbooks of Fuzzy Sets Series (Kluwer Academic Publish ers, 1999). Many of the topological chapters of the present work are not only based upon the foundations and notation for topology laid down in the Hand book, but also upon Handbook developments in convergence, uniform spaces, compactness, separation axioms, and canonical examples; and thus this work is, with respect to topology, a continuation of the standardization of the Hand book. At the same time, this work significantly complements the Handbook in regard to algebraic structures. Thus the present volume is an extension of the content and role of the Handbook as a reference work. On the other hand, this volume, even as the Handbook, is a culmination of mathematical developments motivated by the renowned International Sem inar on Fuzzy Set Theory, also known as the Linz Seminar, held annually in Linz, Austria. Much of the material of this volume is related to the Twenti eth Seminar held in February 1999, material for which the Seminar played a crucial and stimulating role, especially in providing feedback, connections, and the necessary screening of ideas."
This book discusses the theory of triangular norms and surveys several applied fields in which triangular norms play a significant part: probabilistic metric spaces, aggregation operators, many-valued logics, fuzzy logics, sets and control, and non-additive measures together with their corresponding integrals. It includes many graphical illustrations and gives a well-balanced picture of theory and applications. It is for mathematicians, computer scientists, applied computer scientists and engineers.
This book has a fundamental relationship to the International Seminar on Fuzzy Set Theory held each September in Linz, Austria. First, this volume is an extended account of the eleventh Seminar of 1989. Second, and more importantly, it is the culmination of the tradition of the preceding ten Seminars. The purpose of the Linz Seminar, since its inception, was and is to foster the development of the mathematical aspects of fuzzy sets. In the earlier years, this was accomplished by bringing together for a week small grou ps of mathematicians in various fields in an intimate, focused environment which promoted much informal, critical discussion in addition to formal presentations. Beginning with the tenth Seminar, the intimate setting was retained, but each Seminar narrowed in theme; and participation was broadened to include both younger scholars within, and established mathematicians outside, the mathematical mainstream of fuzzy sets theory. Most of the material of this book was developed over the years in close association with the Seminar or influenced by what transpired at Linz. For much of the content, it played a crucial role in either stimulating this material or in providing feedback and the necessary screening of ideas. Thus we may fairly say that the book, and the eleventh Seminar to which it is directly related, are in many respects a culmination of the previous Seminars.
BrunoBuchberger This book is a synopsis of basic and applied research done at the various re search institutions of the Softwarepark Hagenberg in Austria. Starting with 15 coworkers in my Research Institute for Symbolic Computation (RISC), I initiated the Softwarepark Hagenberg in 1987 on request of the Upper Aus trian Government with the objective of creating a scienti?c, technological, and economic impulse for the region and the international community. In the meantime, in a joint e?ort, the Softwarepark Hagenberg has grown to the current (2009) size of over 1000 R&D employees and 1300 students in six research institutions, 40 companies and 20 academic study programs on the bachelor, master's and PhD level. The goal of the Softwarepark Hagenberg is innovation of economy in one of the most important current technologies: software. It is the message of this book that this can only be achieved and guaranteed long term by "watering the root", namely emphasis on research, both basic and applied. In this book, we summarize what has been achieved in terms of research in the various research institutions in the Softwarepark Hagenberg and what research vision we have for the imminent future. When I founded the Softwarepark Hagenberg, in addition to the "watering the root" principle, I had the vision that such a technology park can only prosper if we realize the "magic triangle", i.e. the close interaction of research, academic education, and business applications at one site, see Figure 1.
Non-Classical Logics and their Applications to Fuzzy Subsets is the first major work devoted to a careful study of various relations between non-classical logics and fuzzy sets. This volume is indispensable for all those who are interested in a deeper understanding of the mathematical foundations of fuzzy set theory, particularly in intuitionistic logic, Lukasiewicz logic, monoidal logic, fuzzy logic and topos-like categories. The tutorial nature of the longer chapters, the comprehensive bibliography and index make it suitable as a valuable and important reference for graduate students as well as research workers in the field of non-classical logics. The book is arranged in three parts: Part A presents the most recent developments in the theory of Heyting algebras, MV-algebras, quantales and GL-monoids. Part B gives a coherent and current account of topos-like categories for fuzzy set theory based on Heyting algebra valued sets, quantal sets of M-valued sets. Part C addresses general aspects of non-classical logics including epistemological problems as well as recursive properties of fuzzy logic.
This book has a fundamental relationship to the International Seminar on Fuzzy Set Theory held each September in Linz, Austria. First, this volume is an extended account of the eleventh Seminar of 1989. Second, and more importantly, it is the culmination of the tradition of the preceding ten Seminars. The purpose of the Linz Seminar, since its inception, was and is to foster the development of the mathematical aspects of fuzzy sets. In the earlier years, this was accomplished by bringing together for a week small grou ps of mathematicians in various fields in an intimate, focused environment which promoted much informal, critical discussion in addition to formal presentations. Beginning with the tenth Seminar, the intimate setting was retained, but each Seminar narrowed in theme; and participation was broadened to include both younger scholars within, and established mathematicians outside, the mathematical mainstream of fuzzy sets theory. Most of the material of this book was developed over the years in close association with the Seminar or influenced by what transpired at Linz. For much of the content, it played a crucial role in either stimulating this material or in providing feedback and the necessary screening of ideas. Thus we may fairly say that the book, and the eleventh Seminar to which it is directly related, are in many respects a culmination of the previous Seminars.
This book aims to present, in a unified approach, a series of mathematical results con cerning triangular norm-based measures and a class of cooperative games with Juzzy coalitions. Our approach intends to emphasize that triangular norm-based measures are powerful tools in exploring the coalitional behaviour in 'such games. They not and simplify some technical aspects of the already classical axiomatic the only unify ory of Aumann-Shapley values, but also provide new perspectives and insights into these results. Moreover, this machinery allows us to obtain, in the game theoretical context, new and heuristically meaningful information, which has a significant impact on balancedness and equilibria analysis in a cooperative environment. From a formal point of view, triangular norm-based measures are valuations on subsets of a unit cube [0, 1]X which preserve dual binary operations induced by trian gular norms on the unit interval [0, 1]. Triangular norms (and their dual conorms) are algebraic operations on [0,1] which were suggested by MENGER [1942] and which proved to be useful in the theory of probabilistic metric spaces (see also [WALD 1943]). The idea of a triangular norm-based measure was implicitly used under various names: vector integrals [DVORETZKY, WALD & WOLFOWITZ 1951], prob abilities oj Juzzy events [ZADEH 1968], and measures on ideal sets [AUMANN & SHAPLEY 1974, p. 152].
This book discusses the theory of triangular norms and surveys several applied fields in which triangular norms play a significant part: probabilistic metric spaces, aggregation operators, many-valued logics, fuzzy logics, sets and control, and non-additive measures together with their corresponding integrals. It includes many graphical illustrations and gives a well-balanced picture of theory and applications. It is for mathematicians, computer scientists, applied computer scientists and engineers.
Fuzzy Sets, Logics and Reasoning about Knowledge reports recent results concerning the genuinely logical aspects of fuzzy sets in relation to algebraic considerations, knowledge representation and commonsense reasoning. It takes a state-of-the-art look at multiple-valued and fuzzy set-based logics, in an artificial intelligence perspective. The papers, all of which are written by leading contributors in their respective fields, are grouped into four sections. The first section presents a panorama of many-valued logics in connection with fuzzy sets. The second explores algebraic foundations, with an emphasis on MV algebras. The third is devoted to approximate reasoning methods and similarity-based reasoning. The fourth explores connections between fuzzy knowledge representation, especially possibilistic logic and prioritized knowledge bases. Readership: Scholars and graduate students in logic, algebra, knowledge representation, and formal aspects of artificial intelligence.
This volume summarizes recent developments in the topological and algebraic structures in fuzzy sets and may be rightly viewed as a continuation of the stan dardization of the mathematics of fuzzy sets established in the "Handbook," namely the Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Volume 3 of The Handbooks of Fuzzy Sets Series (Kluwer Academic Publish ers, 1999). Many of the topological chapters of the present work are not only based upon the foundations and notation for topology laid down in the Hand book, but also upon Handbook developments in convergence, uniform spaces, compactness, separation axioms, and canonical examples; and thus this work is, with respect to topology, a continuation of the standardization of the Hand book. At the same time, this work significantly complements the Handbook in regard to algebraic structures. Thus the present volume is an extension of the content and role of the Handbook as a reference work. On the other hand, this volume, even as the Handbook, is a culmination of mathematical developments motivated by the renowned International Sem inar on Fuzzy Set Theory, also known as the Linz Seminar, held annually in Linz, Austria. Much of the material of this volume is related to the Twenti eth Seminar held in February 1999, material for which the Seminar played a crucial and stimulating role, especially in providing feedback, connections, and the necessary screening of ideas."
BrunoBuchberger This book is a synopsis of basic and applied research done at the various re search institutions of the Softwarepark Hagenberg in Austria. Starting with 15 coworkers in my Research Institute for Symbolic Computation (RISC), I initiated the Softwarepark Hagenberg in 1987 on request of the Upper Aus trian Government with the objective of creating a scienti?c, technological, and economic impulse for the region and the international community. In the meantime, in a joint e?ort, the Softwarepark Hagenberg has grown to the current (2009) size of over 1000 R&D employees and 1300 students in six research institutions, 40 companies and 20 academic study programs on the bachelor, master's and PhD level. The goal of the Softwarepark Hagenberg is innovation of economy in one of the most important current technologies: software. It is the message of this book that this can only be achieved and guaranteed long term by "watering the root," namely emphasis on research, both basic and applied. In this book, we summarize what has been achieved in terms of research in the various research institutions in the Softwarepark Hagenberg and what research vision we have for the imminent future. When I founded the Softwarepark Hagenberg, in addition to the "watering the root" principle, I had the vision that such a technology park can only prosper if we realize the "magic triangle," i.e. the close interaction of research, academic education, and business applications at one site, see Figure 1.
|
![]() ![]() You may like...
|