Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This volume is based on contributions to the second Brain Dynamics Conference, held in Berlin on August 10-14, 1987, as a satellite conference of the Budapest Congress of the International Brain Research Organization. Like the volume resulting from the first conference, Dynamics of Sensory and Cognitive Processing by the Brain, the present work covers new approaches to brain function, with emphasis on electromagnetic fields, EEG, event-related potentials, connectivistic views, and neural networks. Close attention is also paid to research in the emerging field of deterministic chaos and strange attractors. The diversity of this collection of papers reflects a multipronged advance in a hitherto relatively neglected domain, i. e., the study of signs of dynamic processes in organized neural tissue in order both to explain them and to exploit them for clues to system function. The need is greater than ever for new windows. This volume reflects a historical moment, the moment when a relatively neglected field of basic research into available signs of dynamic processes ongoing in organized neural tissue is expanding almost explosively to complement other approaches. From the topics treated, this book should appeal, as did its predecessor, to neuroscientists, neurologists, scientists studying complex systems, artificial intelligence, and neural networks, psychobiologists, and all basic and clinical investigators concerned with new techniques of monitoring and analyzing the brain's electromagnetic activity.
by W. J. Freeman These two volumes on "Brain Oscillations" appear at a most opportune time. As the "Decade of the Brain" draws to its close, brain science is coming to terms with its ultimate problem: understanding the mechanisms by which the immense number of neurons in the human brain interact to produce the higher cognitive functions. The ideas, concepts, methods, interpretations and examples, which are presented here in voluminous detail by a world-class authority in electrophysiology, summarize the intellectual equipment that will be required to construct satisfactory solutions to the problem. Neuroscience is ripe for change. The last revolution of ideas took place in the middle of the century now ending, when the field took a sharp turn into a novel direction. During the preceding five decades the prevailing view, carried forward from the 19th century, was that neurons are the carriers of nerve energy, either in chemical or electrical forms (Freeman, 1995). That point of view was enormously productive in terms of coming to understand the chemical basis for synaptic transmission, the electrochemistry of the ac tion potential, the ionic mechanisms of membrane currents and gates, the functional neuroanatomy that underlies the hierarchy of reflexes, and the neural fields and'their resonances that support Gestalt phenomena. No bet ter testimony can be given of the power of the applications of this approach than to point out that it provides the scientific basis for contemporary neu rology, neuropsychiatry, and brain imaging."
In neurophysiology, the emphasis has been on single-unit studies for a quarter century, since the sensory work by Lettwin and coworkers and by Hubel and Wiesel, the cen tral work by Mountcastle, the motor work by the late Evarts, and so on. In recent years, however, field potentials - and a more global approach general ly - have been receiving renewed and increasing attention. This is a result of new findings made possible by technical and conceptual advances and by the confirma tion and augmentation of earlier findings that were widely ignored for being contro versial or inexplicable. To survey the state of this active field, a conference was held in West Berlin in August 1985 that attempted to cover all of the new approaches to the study of brain function. The approaches and emphases were very varied: basic and applied, electric and magnetic, EEG and EP/ERP, connectionistic and field, global and local fields, surface and multielectrode, low frequencies and high frequencies, linear and non linear. The conference comprised sessions of invited lectures, a panel session of seven speakers on "How brains may work," and a concluding survey of relevant methodologies. The conference showed that the combination of concepts, methods, and results could open up new important vistas in brain research. Included here are the proceedings of the conference, updated and revised by the authors. Several attendees who did not present papers at the conference later ac cepted my invitation to write chapters for the book.
Neuroscience is ripe for a paradigm change as Freeman and Mountcastle describe. Brain Oscillations provide an important key to this change. In this book the functional importance of the brain's multiple oscillations is treated with an integrative scope. According to the author, neurophysiology and cognition demand integrative approaches similar to those of Galilei and Newton in physics and of Darwin in biology. Not only the human brain but also lower brains and ganglia of invertebrates are treated with electrophysical methods. Experiments on sensory registration, perception, movement, and cognitive processes related to attention, learning, and memory are described. A synopsis on brain functions leads to a new "neuron assemblies doctrine," extending the concept of Sherrington, and new trends in this field. The book will appeal to scientists and graduate students.
The analysis of deterministic chaos is currently an active field in many branches of research. Mathematically all nonlinear dynamical systems with more than two degrees of freedom can generate chaos, becoming unpredictable over a longer time scale. The brain is a nonlinear system par excellence. Accordingly, the concepts of chaotic dynamics have found, in the last five years, an important application in research on compound electrical activity of the brain. The present volume seeks to cover most of the relevant studies in the newly emerging field of chaotic attractors in the brain. This volume is essentially a selection and reorganization of contri butions from the first two volumes in the Springer Series in Brain Dynamics, which were based on conferences held in 1985 and 1987 in Berlin. It also includes (a) a survey of progress in the recording of evoked oscillations of the brain both at the cellular and EEG levels and (b) an agenda for research on chaotic dynamics. Although the first publications pointing out evidence of chaotic behavior of the EEG did not appear until the beginning of 1985, the presence of the pioneering scientists in this field gave the participants at the first conference (volume 1) a strong impulse toward this field. For me, as conference organizer, having been for a long time active in nonlinear EEG research, the integration of this topic was self-evident; however, the enthusiasm of the conference participants was greater than expected.
|
You may like...
|