![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Simultaneously storing both spectral and spatial information, 3D spectroscopy offers a new way to tackle astrophysical problems, and opens up new lines of research. Since its inception in the eighties and early nineties, research in this field has grown enormously. Large telescopes all around the world are now equipped with integral field units, and two instruments of the future James Webb Space Telescope will have integral field spectroscopic capabilities. Nowadays, more effort is dedicated to refining techniques for reducing, analyzing and interpreting the data obtained with 3D spectrographs. Containing lectures from the seventeenth Winter School of the Canary Islands Astrophysics Institute, this book explores new 3D spectroscopy techniques and data. A broad and balanced presentation of research in this field, it introduces astronomers to a new generation of instruments, widening the appeal of integral field spectroscopy and helping it become a powerful tool in tackling astrophysical problems.
This volume presents the lectures of the nineteenth Canary Islands Winter School, dedicated to the Cosmic Microwave Background (CMB). This relict radiation from the very early Universe provides a fundamental tool for precision cosmology. Prestigious researchers in the field present a comprehensive overview of current knowledge of the CMB, reviewing the theoretical foundations, the main observational results and the most advanced statistical techniques used in this discipline. The lectures give coverage from the basic principles to the most recent research results, reviewing state of the art observational and statistical analysis techniques. The impact of new experiments and the constraints imposed on cosmological parameters are emphasized and put into the broader context of research in cosmology. This is an important resource for both graduate students and experienced researchers, revealing the spectacular progress that has been made in the study of the CMB within the last decade.
Simultaneously storing both spectral and spatial information, 3D spectroscopy offers a new way to tackle astrophysical problems, and opens up new lines of research. Since its inception in the eighties and early nineties, research in this field has grown enormously. Large telescopes all around the world are now equipped with integral field units, and two instruments of the James Webb Space Telescope will have integral field spectroscopic capabilities. Nowadays, more effort is dedicated to refining techniques for reducing, analysing and interpreting the data obtained with 3D spectrographs. Containing lectures from the seventeenth Winter School of the Canary Islands Astrophysics Institute, this book explores 3D spectroscopy techniques and data. A broad and balanced presentation of research in this field, it introduces astronomers to a new generation of instruments, widening the appeal of integral field spectroscopy and helping it become a powerful tool in tackling astrophysical problems.
This volume presents the lectures of the nineteenth Canary Islands Winter School, dedicated to the Cosmic Microwave Background (CMB). This relict radiation from the very early Universe provides a fundamental tool for precision cosmology. Prestigious researchers in the field present a comprehensive overview of current knowledge of the CMB, reviewing the theoretical foundations, the main observational results and the most advanced statistical techniques used in this discipline. The lectures give coverage from the basic principles to the most recent research results, reviewing state of the art observational and statistical analysis techniques. The impact of new experiments and the constraints imposed on cosmological parameters are emphasized and put into the broader context of research in cosmology. This is an important resource for both graduate students and experienced researchers, revealing the spectacular progress that has been made in the study of the CMB within the last decade.
Gravitational lenses offer the best, and sometimes the only, means of tackling key problems in many fields of astrophysics and cosmology. According to Einstein's theory, the curvature of light-rays increases with mass; gravitational lenses can be used to map the distribution of mass in a Universe in which virtually all matter is dark matter of an unknown nature. Gravitational lensing has significantly improved our knowledge of many astrophysical phenomena, such as exoplanets, galaxies, active galactic nuclei, quasars, clusters, large-scale structure and the Universe itself. All these topics are covered fully in this book, together with two tutorials on lens and microlensing modelling. The future of lensing in relation to large surveys and the anticipated discoveries of thousands more gravitational lenses is also discussed, making this volume an ideal guide for postgraduate students and practising researchers in the use of gravitational lenses as a tool in their investigations.
|
![]() ![]() You may like...
Herontdek Jou Selfvertroue - Sewe Stappe…
Rolene Strauss
Paperback
![]()
|