Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book provides an overview of electrodeposition of nanomaterials from principles to modern concepts for advanced materials in science and technology. Electrochemical deposition or electrodeposition is explained for fabrication and mass production of functional and nanostructured device materials. The present book spans from principles to modern insights and concepts. It gives a comprehensive overview of the electrochemistry of materials, which is useful as basic information to understand concepts used for nanostructuring of electrodeposited materials, reviews the electrodeposition constituents, thermodynamics and kinetics of electrodeposition, electrochemical and instrumental assessment techniques and other physical factors affecting the electrodeposition mechanisms. A wide variety of nanostructured materials and related concepts and applications are explained with respect to nanocrystals, nanocrystalline films, template-based nanostructures, nanocomposite films, nanostructures on semiconductors, multilayers, mesoporous films, scanning microscopical probe assisted fabrication and galvanic replacement. This book is useful for researchers in materials science, engineering technologists and graduate students. It can also be used as a textbook for undergraduates and graduate students studying related disciplines.
Spintronics manipulates individual magnetic moments to integrate logic functions and non-volatile information storage on the same platform. As is often the case in condensed matter science, advances are made through the synthesis of novel materials and high quality new physics materials. Giant magnetoresistance and dilute magnetic semiconductors are two such examples. However, the remarkable potential of spintronics for quantum computation faces major challenges when it comes to controlling simultaneously several qbits encoded in magnetic moments. After a brief introduction to concepts in nanomagnetism and spintronics, the text reviews recent techniques and their achievements in the synthesis and fabrication of magnetic nanostructures. The methods presented here emphasize bottom up or top down approaches for nanodots, nanowires and thin films. They include: focused ion beam irradiation, electron beam-induced chemical vapour deposition, chemical, and electrochemical methods. The later part of the book reviews magnetoelectric materials, the giant magnetoresistance in magnetic superlattices, dynamics effects in spin transfer torque oscillators, dilute magnetic oxides, rare earth nitrides with nuclear resonance scattering, and M ssbauer spectroscopy in spintronics. Finally, the last part of this book discusses applications to magnetic storage and bio-magnetism. Nanomagnetism and Spintronics will be useful to graduate students and researchers and engineers in the field of nanoscience.
This book provides an overview of electrodeposition of nanomaterials from principles to modern concepts for advanced materials in science and technology. Electrochemical deposition or electrodeposition is explained for fabrication and mass production of functional and nanostructured device materials. The present book spans from principles to modern insights and concepts. It gives a comprehensive overview of the electrochemistry of materials, which is useful as basic information to understand concepts used for nanostructuring of electrodeposited materials, reviews the electrodeposition constituents, thermodynamics and kinetics of electrodeposition, electrochemical and instrumental assessment techniques and other physical factors affecting the electrodeposition mechanisms. A wide variety of nanostructured materials and related concepts and applications are explained with respect to nanocrystals, nanocrystalline films, template-based nanostructures, nanocomposite films, nanostructures on semiconductors, multilayers, mesoporous films, scanning microscopical probe assisted fabrication and galvanic replacement. This book is useful for researchers in materials science, engineering technologists and graduate students. It can also be used as a textbook for undergraduates and graduate students studying related disciplines.
|
You may like...
|