![]() |
![]() |
Your cart is empty |
||
Showing 1 - 13 of 13 matches in All Departments
This book provides a comprehensive treatment of CMOS circuits for passive wireless microsystems. Major topics include: an overview of passive wireless microsystems, design challenges of passive wireless microsystems, fundamental issues of ultra-low power wireless communications, radio-frequency power harvesting, ultra-low power modulators and demodulators, ultra-low power temperature-compensated current and voltage references, clock generation and remote calibration, and advanced design techniques for ultra low-power analog signal processing.
This book provides readers with a comprehensive treatment of the principles, circuit design techniques, and applications of injection-locking in mixed-mode signal processing, with an emphasis on CMOS implementation. Major topics include: An overview of injection-locking, the principle of injection-locking in harmonic and non-harmonic oscillators, lock range enhancement techniques for harmonic oscillators, lock range enhancement techniques for non-harmonic oscillators, and the emerging applications of injection-locking in mixed-mode signal processing. Provides a single-source reference to the principles, circuit design techniques, and applications of injection-locking in mixed-mode signal processing; Includes a rich collection of design techniques for increasing the lock range of oscillators under injection, along with in-depth examination of the pros and cons of these methods; Enables a broad range of applications, such as passive wireless microsystems, forwarded-clock parallel data links, frequency synthesizers for wireless and wireline communications, and low phase noise phase-locked loops.
Many new topologies and circuit design techniques have emerged recently to improve the performance of active inductors, but a comprehensive treatment of the theory, topology, characteristics, and design constraint of CMOS active inductors and transformers, and a detailed examination of their emerging applications in high-speed analog signal processing and data communications over wire and wireless channels, is not available. This book is an attempt to provide an in-depth examination and a systematic presentation of the operation principles and implementation details of CMOS active inductors and transformers, and a detailed examination of their emerging applications in high-speed analog signal processing and data communications over wire and wireless channels. The content of the book is drawn from recently published research papers and are not available in a single, cohesive book. Equal emphasis is given to the theory of CMOS active inductors and transformers, and their emerging applications. Major subjects to be covered in the book include: inductive characteristics in high-speed analog signal processing and data communications, spiral inductors and transformers - modeling and limitations, a historical perspective of device synthesis, the topology, characterization, and implementation of CMOS active inductors and transformers, and the application of CMOS active inductors and transformers in high-speed analog and digital signal processing and data communications.
Computer Methods for Analysis of Mixed-Mode Switching Circuits
provides an in-depth treatment of the principles and implementation
details of computer methods and numerical algorithms for analysis
of mixed-mode switching circuits. Major topics include:
Time-mode circuits, where information is represented by time difference between digital events, offer a viable and technology-friendly means to realize mixed-mode circuits and systems in nanometer complementary metal-oxide semiconductor (CMOS) technologies. Various architectures of time-based signal processing and design techniques of CMOS time-mode circuits have emerged; however, an in-depth examination of the principles of time-based signal processing and design techniques of time-mode circuits has not been available-until now. CMOS Time-Mode Circuits and Systems: Fundamentals and Applications is the first book to deliver a comprehensive treatment of CMOS time-mode circuits and systems. Featuring contributions from leading experts, this authoritative text contains a rich collection of literature on time-mode circuits and systems. The book begins by presenting a critical comparison of voltage-mode, current-mode, and time-mode signaling for mixed-mode signal processing and then: Covers the fundamentals of time-mode signal processing, such as voltage-to-time converters, all-digital phase-locked loops, and frequency synthesizers Investigates the performance characteristics, architecture, design techniques, and implementation of time-to-digital converters Discusses time-mode delta-sigma-based analog-to-digital converters, placing a great emphasis on time-mode quantizers Includes a detailed study of ultra-low-power integrated time-mode temperature measurement systems CMOS Time-Mode Circuits and Systems: Fundamentals and Applications provides a valuable reference for circuit design engineers, hardware system engineers, graduate students, and others seeking to master this fast-evolving field.
The book addresses the need to investigate new approaches to lower energy requirement in multiple application areas and serves as a guide into emerging circuit technologies. It explores revolutionary device concepts, sensors, and associated circuits and architectures that will greatly extend the practical engineering limits of energy-efficient computation. The book responds to the need to develop disruptive new system architecutres, circuit microarchitectures, and attendant device and interconnect technology aimed at achieving the highest level of computational energy efficiency for general purpose computing systems. Features Discusses unique technologies and material only available in specialized journal and conferences Covers emerging applications areas, such as ultra low power communications, emerging bio-electronics, and operation in extreme environments Explores broad circuit operation, ex. analog, RF, memory, and digital circuits Contains practical applications in the engineering field, as well as graduate studies Written by international experts from both academia and industry
This book deals with the analysis and design of CMOS current-mode circuits for data communications. CMOS current-mode sampled-data networks, i.e. switched-current circuits, are excluded. Major subjects covered in the book include: a critical comparison of voltage-mode and current-mode circuits; the building blocks of current-mode circuits: design techniques; modeling of wire channels, electrical signaling for Gbps data communications; ESD protection for current-mode circuits and more. This book will appeal to IC design engineers, hardware system engineers and others.
Time-mode circuits, where information is represented by time difference between digital events, offer a viable and technology-friendly means to realize mixed-mode circuits and systems in nanometer complementary metal-oxide semiconductor (CMOS) technologies. Various architectures of time-based signal processing and design techniques of CMOS time-mode circuits have emerged; however, an in-depth examination of the principles of time-based signal processing and design techniques of time-mode circuits has not been available-until now. CMOS Time-Mode Circuits and Systems: Fundamentals and Applications is the first book to deliver a comprehensive treatment of CMOS time-mode circuits and systems. Featuring contributions from leading experts, this authoritative text contains a rich collection of literature on time-mode circuits and systems. The book begins by presenting a critical comparison of voltage-mode, current-mode, and time-mode signaling for mixed-mode signal processing and then: Covers the fundamentals of time-mode signal processing, such as voltage-to-time converters, all-digital phase-locked loops, and frequency synthesizers Investigates the performance characteristics, architecture, design techniques, and implementation of time-to-digital converters Discusses time-mode delta-sigma-based analog-to-digital converters, placing a great emphasis on time-mode quantizers Includes a detailed study of ultra-low-power integrated time-mode temperature measurement systems CMOS Time-Mode Circuits and Systems: Fundamentals and Applications provides a valuable reference for circuit design engineers, hardware system engineers, graduate students, and others seeking to master this fast-evolving field.
This book deals with the analysis and design of CMOS current-mode circuits for data communications. CMOS current-mode sampled-data networks, i.e. switched-current circuits, are excluded. Major subjects covered in the book include: a critical comparison of voltage-mode and current-mode circuits; the building blocks of current-mode circuits: design techniques; modeling of wire channels, electrical signaling for Gbps data communications; ESD protection for current-mode circuits and more. This book will appeal to IC design engineers, hardware system engineers and others.
Many new topologies and circuit design techniques have emerged recently to improve the performance of active inductors, but a comprehensive treatment of the theory, topology, characteristics, and design constraint of CMOS active inductors and transformers, and a detailed examination of their emerging applications in high-speed analog signal processing and data communications over wire and wireless channels, is not available. This book is an attempt to provide an in-depth examination and a systematic presentation of the operation principles and implementation details of CMOS active inductors and transformers, and a detailed examination of their emerging applications in high-speed analog signal processing and data communications over wire and wireless channels. The content of the book is drawn from recently published research papers and are not available in a single, cohesive book. Equal emphasis is given to the theory of CMOS active inductors and transformers, and their emerging applications. Major subjects to be covered in the book include: inductive characteristics in high-speed analog signal processing and data communications, spiral inductors and transformers - modeling and limitations, a historical perspective of device synthesis, the topology, characterization, and implementation of CMOS active inductors and transformers, and the application of CMOS active inductors and transformers in high-speed analog and digital signal processing and data communications.
Computer Methods for Analysis of Mixed-Mode Switching Circuits
provides an in-depth treatment of the principles and implementation
details of computer methods and numerical algorithms for analysis
of mixed-mode switching circuits. Major topics include:
The book addresses the need to investigate new approaches to lower energy requirement in multiple application areas and serves as a guide into emerging circuit technologies. It explores revolutionary device concepts, sensors, and associated circuits and architectures that will greatly extend the practical engineering limits of energy-efficient computation. The book responds to the need to develop disruptive new system architecutres, circuit microarchitectures, and attendant device and interconnect technology aimed at achieving the highest level of computational energy efficiency for general purpose computing systems. Features Discusses unique technologies and material only available in specialized journal and conferences Covers emerging applications areas, such as ultra low power communications, emerging bio-electronics, and operation in extreme environments Explores broad circuit operation, ex. analog, RF, memory, and digital circuits Contains practical applications in the engineering field, as well as graduate studies Written by international experts from both academia and industry
This book provides a comprehensive treatment of CMOS circuits for passive wireless microsystems. Major topics include: an overview of passive wireless microsystems, design challenges of passive wireless microsystems, fundamental issues of ultra-low power wireless communications, radio-frequency power harvesting, ultra-low power modulators and demodulators, ultra-low power temperature-compensated current and voltage references, clock generation and remote calibration, and advanced design techniques for ultra low-power analog signal processing.
|
![]() ![]() You may like...
Atlas - The Story Of Pa Salt
Lucinda Riley, Harry Whittaker
Paperback
|