Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Low Power Analog CMOS for Cardiac Pacemakers proposes new
techniques for the reduction of power consumption in analog
integrated circuits. Our main example is the pacemaker sense
channel, which is representative of a broader class of biomedical
circuits aimed at qualitatively detecting biological signals.
This book presents a system-level analysis of inductive wireless power transfer (WPT) links. The basic requirements, design parameters, and utility of key building blocks used in inductive WPT links are presented, followed by detailed theoretical analysis, design, and optimization procedure, while considering practical aspects for various application domains. Readers are provided with fundamental, yet easy to follow guidelines to help them design high-efficiency inductive links, based on a set of application-specific target specifications. The authors discuss a wide variety of recently proposed approaches to achieve the maximum efficiency point, such as the use of additional resonant coils, matching networks, modulation of the load quality factor (Q-modulation), and adjustable DC-DC converters. Additionally, the attainability of the maximum efficiency point together with output voltage regulation is addressed in a closed-loop power control mechanism. Numerous examples, including MATLAB/Octave calculation scripts and LTspice simulation files, are presented throughout the book. This enables readers to check their own results and test variations, facilitating a thorough understanding of the concepts discussed. The book concludes with real examples demonstrating the practical application of topics discussed. Covers both introductory and advanced levels of theory and practice, providing readers with required knowledge and tools to carry on from simple to advanced wireless power transfer concepts and system designs; Provides theoretical foundation throughout the book to address different design aspects; Presents numerous examples throughout the book to complement the analysis and designs; Includes supplementary material (numerical and circuit simulation files) that provide a "hands-on" experience for the reader; Uses real examples to demonstrate the practical application of topics discussed.
Power reduction is a central priority in battery-powered medical
implantable devices, particularly pacemakers, to either increase
battery lifetime or decrease size using a smaller battery. Low
Power Analog CMOS for Cardiac Pacemakers proposes new techniques
for the reduction of power consumption in analog integrated
circuits. Our main example is the pacemaker sense channel, which is
representative of a broader class of biomedical circuits aimed at
qualitatively detecting biological signals.
This book presents a system-level analysis of inductive wireless power transfer (WPT) links. The basic requirements, design parameters, and utility of key building blocks used in inductive WPT links are presented, followed by detailed theoretical analysis, design, and optimization procedure, while considering practical aspects for various application domains. Readers are provided with fundamental, yet easy to follow guidelines to help them design high-efficiency inductive links, based on a set of application-specific target specifications. The authors discuss a wide variety of recently proposed approaches to achieve the maximum efficiency point, such as the use of additional resonant coils, matching networks, modulation of the load quality factor (Q-modulation), and adjustable DC-DC converters. Additionally, the attainability of the maximum efficiency point together with output voltage regulation is addressed in a closed-loop power control mechanism. Numerous examples, including MATLAB/Octave calculation scripts and LTspice simulation files, are presented throughout the book. This enables readers to check their own results and test variations, facilitating a thorough understanding of the concepts discussed. The book concludes with real examples demonstrating the practical application of topics discussed. Covers both introductory and advanced levels of theory and practice, providing readers with required knowledge and tools to carry on from simple to advanced wireless power transfer concepts and system designs; Provides theoretical foundation throughout the book to address different design aspects; Presents numerous examples throughout the book to complement the analysis and designs; Includes supplementary material (numerical and circuit simulation files) that provide a "hands-on" experience for the reader; Uses real examples to demonstrate the practical application of topics discussed.
|
You may like...
|