Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book provides a review of advanced topics relating to the theory, research, analysis and implementation in the context of big data platforms and their applications, with a focus on methods, techniques, and performance evaluation. The explosive growth in the volume, speed, and variety of data being produced every day requires a continuous increase in the processing speeds of servers and of entire network infrastructures, as well as new resource management models. This poses significant challenges (and provides striking development opportunities) for data intensive and high-performance computing, i.e., how to efficiently turn extremely large datasets into valuable information and meaningful knowledge. The task of context data management is further complicated by the variety of sources such data derives from, resulting in different data formats, with varying storage, transformation, delivery, and archiving requirements. At the same time rapid responses are needed for real-time applications. With the emergence of cloud infrastructures, achieving highly scalable data management in such contexts is a critical problem, as the overall application performance is highly dependent on the properties of the data management service.
This book consists of eight chapters, five of which provide a summary of the tutorials and workshops organised as part of the cHiPSet Summer School: High-Performance Modelling and Simulation for Big Data Applications Cost Action on "New Trends in Modelling and Simulation in HPC Systems," which was held in Bucharest (Romania) on September 21-23, 2016. As such it offers a solid foundation for the development of new-generation data-intensive intelligent systems. Modelling and simulation (MS) in the big data era is widely considered the essential tool in science and engineering to substantiate the prediction and analysis of complex systems and natural phenomena. MS offers suitable abstractions to manage the complexity of analysing big data in various scientific and engineering domains. Unfortunately, big data problems are not always easily amenable to efficient MS over HPC (high performance computing). Further, MS communities may lack the detailed expertise required to exploit the full potential of HPC solutions, and HPC architects may not be fully aware of specific MS requirements. The main goal of the Summer School was to improve the participants' practical skills and knowledge of the novel HPC-driven models and technologies for big data applications. The trainers, who are also the authors of this book, explained how to design, construct, and utilise the complex MS tools that capture many of the HPC modelling needs, from scalability to fault tolerance and beyond. In the final three chapters, the book presents the first outcomes of the school: new ideas and novel results of the research on security aspects in clouds, first prototypes of the complex virtual models of data in big data streams and a data-intensive computing framework for opportunistic networks. It is a valuable reference resource for those wanting to start working in HPC and big data systems, as well as for advanced researchers and practitioners.
Most applications generate large datasets, like social networking and social influence programs, smart cities applications, smart house environments, Cloud applications, public web sites, scientific experiments and simulations, data warehouse, monitoring platforms, and e-government services. Data grows rapidly, since applications produce continuously increasing volumes of both unstructured and structured data. Large-scale interconnected systems aim to aggregate and efficiently exploit the power of widely distributed resources. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance and to create a smart environment. The impact on data processing, transfer and storage is the need to re-evaluate the approaches and solutions to better answer the user needs. A variety of solutions for specific applications and platforms exist so a thorough and systematic analysis of existing solutions for data science, data analytics, methods and algorithms used in Big Data processing and storage environments is significant in designing and implementing a smart environment. Fundamental issues pertaining to smart environments (smart cities, ambient assisted leaving, smart houses, green houses, cyber physical systems, etc.) are reviewed. Most of the current efforts still do not adequately address the heterogeneity of different distributed systems, the interoperability between them, and the systems resilience. This book will primarily encompass practical approaches that promote research in all aspects of data processing, data analytics, data processing in different type of systems: Cluster Computing, Grid Computing, Peer-to-Peer, Cloud/Edge/Fog Computing, all involving elements of heterogeneity, having a large variety of tools and software to manage them. The main role of resource management techniques in this domain is to create the suitable frameworks for development of applications and deployment in smart environments, with respect to high performance. The book focuses on topics covering algorithms, architectures, management models, high performance computing techniques and large-scale distributed systems.
This book consists of eight chapters, five of which provide a summary of the tutorials and workshops organised as part of the cHiPSet Summer School: High-Performance Modelling and Simulation for Big Data Applications Cost Action on "New Trends in Modelling and Simulation in HPC Systems," which was held in Bucharest (Romania) on September 21-23, 2016. As such it offers a solid foundation for the development of new-generation data-intensive intelligent systems. Modelling and simulation (MS) in the big data era is widely considered the essential tool in science and engineering to substantiate the prediction and analysis of complex systems and natural phenomena. MS offers suitable abstractions to manage the complexity of analysing big data in various scientific and engineering domains. Unfortunately, big data problems are not always easily amenable to efficient MS over HPC (high performance computing). Further, MS communities may lack the detailed expertise required to exploit the full potential of HPC solutions, and HPC architects may not be fully aware of specific MS requirements. The main goal of the Summer School was to improve the participants' practical skills and knowledge of the novel HPC-driven models and technologies for big data applications. The trainers, who are also the authors of this book, explained how to design, construct, and utilise the complex MS tools that capture many of the HPC modelling needs, from scalability to fault tolerance and beyond. In the final three chapters, the book presents the first outcomes of the school: new ideas and novel results of the research on security aspects in clouds, first prototypes of the complex virtual models of data in big data streams and a data-intensive computing framework for opportunistic networks. It is a valuable reference resource for those wanting to start working in HPC and big data systems, as well as for advanced researchers and practitioners.
This book constitutes the proceedings of the 10th International Symposium on Cyberspace Safety and Security, CSS 2018, held in Amalfi, Italy, in October 2018. The 25 full papers presented in this volume were carefully reviewed and selected from 79 submissions. The papers focus on cybersecurity; cryptography, data security, and biometric techniques; and social security, ontologies, and smart applications.
This book provides a review of advanced topics relating to the theory, research, analysis and implementation in the context of big data platforms and their applications, with a focus on methods, techniques, and performance evaluation. The explosive growth in the volume, speed, and variety of data being produced every day requires a continuous increase in the processing speeds of servers and of entire network infrastructures, as well as new resource management models. This poses significant challenges (and provides striking development opportunities) for data intensive and high-performance computing, i.e., how to efficiently turn extremely large datasets into valuable information and meaningful knowledge. The task of context data management is further complicated by the variety of sources such data derives from, resulting in different data formats, with varying storage, transformation, delivery, and archiving requirements. At the same time rapid responses are needed for real-time applications. With the emergence of cloud infrastructures, achieving highly scalable data management in such contexts is a critical problem, as the overall application performance is highly dependent on the properties of the data management service.
This book constitutes the thoroughly refereed post-conference proceedings of the Second International Workshop on Adaptive Resource Management and Scheduling for Cloud Computing, ARMS-CC 2015, held in Conjunction with ACM Symposium on Principles of Distributed Computing, PODC 2015, in Donostia-San Sebastian, Spain, in July 2015. The 12 revised full papers, including 1 invited paper, were carefully reviewed and selected from 24 submissions. The papers have identified several important aspects of the problem addressed by ARMS-CC: self-* and autonomous cloud systems, cloud quality management and service level agreement (SLA), scalable computing, mobile cloud computing, cloud computing techniques for big data, high performance cloud computing, resource management in big data platforms, scheduling algorithms for big data processing, cloud composition, federation, bridging, and bursting, cloud resource virtualization and composition, load-balancing and co-allocation, fault tolerance, reliability, and availability of cloud systems.
This book constitutes the thoroughly refereed post-conference proceedings of the First International Workshop on Adaptive Resource Management and Scheduling for Cloud Computing, ARMS-CC 2014, held in Conjunction with ACM Symposium on Principles of Distributed Computing, PODC 2014, in Paris, France, in July 2014. The 14 revised full papers (including 2 invited talks) were carefully reviewed and selected from 29 submissions and cover topics such as scheduling methods and algorithms, services and applications, fundamental models for resource management in the cloud.
|
You may like...
|