Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This volume originates from the NATO Advanced Study Institute Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models, held in Pisa, Italy in June 2001. The Institute was sponsored and mainly funded by the NATO Scientific Affairs Division, whose constant contribution in favour of the cooperation among scientists from different countries must be acknowledged. Other Institutions substantially contributed to the success of the ASI and our thanks and appreciation go to the Italian National Research Council (Consiglio Nazionale delle Ricerche), the Italian Space Agency (Agenzia Spaziale Italiana), the European Society for Photobiology and the bank Banca Toscana. In the last two decades of the past century, concern has been growing for the possible effects on the biosphere of the stratospheric ozone depletion, due to anthropogenic emissions of ozone-destroying chemicals. The ozone loss causes an increase in the biologically important part of the solar ultraviolet radiation (UV) reaching the Earth's surface, which constitutes a threat to the biosphere, because of UV damaging effects on humans, animals and plants. The international agreements have reduced the production of ozo- destroying compounds, which, however, are still present in high concentrations in the stratosphere, mainly because of their longevity, and thus ozone depletion will likely continue for several decades.
This volume contains the lectures given at the NATO Advanced Study Institute on "Biophysics of Photoreceptors and Photomovements in Microorganisms" held in Tir renia (Pisa), Italy, in September 1990. The Institute was sponsored and mainly funded by the Scientific Affairs Division of NATO; the Physical Science Committee and the Institute of Biophysics of National Research Council of Italy also supported the School and substantially contributed to its success. It is our pleasant duty to thank these institu tions. Scientists from very different backgrounds contributed to the understanding of this fast developing field of research, which has seen considerable progress during the last years. The areas of expertise ranged from behavioral sciences, supported by sophi sticated techniques such as image analysis or laser light scattering, to spectroscopy, ap plied, in different time domains, to the study of the primary photoreactions, to electro physiology, biochemistry or molecular biology, with the aim of analyzing the various steps of the transduction chains and how they control the motor apparatus of the cells. The organisms studied covered a wide range, from bacteria to algae, fungi and other eukaryotes. Thus, the ASI represented a successful opportunity for carrying on and imple menting an interdisciplinary approach to the study of the biophysical basis of photore ception and photosensory transduction in aneural organisms, with special attention to the basic phenomena and the underlying molecular events. We hope that this book has caught the spirit in which the ASI was conceived."
A NATO Advanced Study Institute on "Light as Energy Source and Information Carrier in Plant Photo physiology" was held at Volterra, Italy, from September 26 to October 6, 1994, in order to consider the fundamental role that light plays in plant growth and development. This book summarises the main lectures given at this meeting which concentrated on both photochemical energy conversion and signalling (photosensing) aspects. Light harvesting and conversion into chemical energy in photosynthesis occurs at the level of chlorophyll/carotenoid containing photosystems in plants. Pigments are non covalently bound to a variety of polypeptides which serve as a specific scaffolding, necessary to determine the energy coupling between pigments and thus allowing rapid excitation energy trasfer from the antenna to the special reaction centre chlorophylls. Data from transient, time resolved spectroscopies, in the femtosecond and picosecond domain, together with model calculations, suggest that this process occurs in the 20-100 picosecond time span. The special ll u ture of reaction centre complexes, ensures rapid primary charge separation, probably in the order of 1-3 picoseconds, with subsequent charge stabilisation reactions proceeding in the hundreds of picoseconds range. The recently resolved crystallographic structure of LHCII, the principal antenna complex of plants, allows precise determination of pigment-pigment distances and thus permits calculation of approximate chlorophyll-chlorophyll Forster hopping rates, which are in good agreement with time resolved measurements."
This volume originates from the NATO Advanced Study Institute Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models, held in Pisa, Italy in June 2001. The Institute was sponsored and mainly funded by the NATO Scientific Affairs Division, whose constant contribution in favour of the cooperation among scientists from different countries must be acknowledged. Other Institutions substantially contributed to the success of the ASI and our thanks and appreciation go to the Italian National Research Council (Consiglio Nazionale delle Ricerche), the Italian Space Agency (Agenzia Spaziale Italiana), the European Society for Photobiology and the bank Banca Toscana. In the last two decades of the past century, concern has been growing for the possible effects on the biosphere of the stratospheric ozone depletion, due to anthropogenic emissions of ozone-destroying chemicals. The ozone loss causes an increase in the biologically important part of the solar ultraviolet radiation (UV) reaching the Earth's surface, which constitutes a threat to the biosphere, because of UV damaging effects on humans, animals and plants. The international agreements have reduced the production of ozo- destroying compounds, which, however, are still present in high concentrations in the stratosphere, mainly because of their longevity, and thus ozone depletion will likely continue for several decades.
The only combined organic photochemistry and photobiology handbook As spectroscopic, synthetic and biological tools become more and more sophisticated, photochemistry and photobiology are merging-making interdisciplinary research essential. Following in the footsteps of its bestselling predecessors, the CRC Handbook of Organic Photochemistry and Photobiology, Third Edition has evolved into a state-of-the-art collection on modern aspects of photochemistry and photobiology. A compilation 67 of topical reviews by leading experts, this compilation provides cutting-edge information on the applications of photochemical and photobiological principles, techniques, and methodologies. New and updated topics in this edition include Industrial photochemistry Photocatalyic water splitting Photocatalysis Photostability of drugs Photochemistry in microreactors Photochemical key-steps in organic synthesis Photochirogenesis Photolabile protecting groups Solar photochemistry Computational photochemistry and photobiology Spin-center shift reactions Sustainable photochemistry Artificial photosynthetic systems Biology of UV-A radiation UV radiation and vitamin D Photodynamic drug delivery Photoimmunology Photodermatology Endogenous antioxidant photoprotection and its enhancement in human skin Phototoxicity of drugs Photodynamic approaches to water disinfection This high-quality and concise collection bridges traditional topics, current trends, and future directions to provide you with the most authoritative and complete resource available on the subject. The IUPAC glossary of photochemistry is included as a CD-ROM.
|
You may like...
|