Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Levy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential equations with reflection. The articles are based on short courses given at the Centre Interfacultaire Bernoulli of the Ecole Polytechnique Federale de Lausanne, Switzerland, from January to June 2012. They offer a valuable resource not only for specialists, but also for other researchers and Ph.D. students in the fields of stochastic analysis and mathematical physics. Contributors: S. Albeverio M. Arnaudon V. Bally V. Barbu H. Bessaih Z. Brzezniak K. Burdzy A.B. Cruzeiro F. Flandoli A. Kohatsu-Higa S. Mazzucchi C. Mueller J. van Neerven M. Ondrejat S. Peszat M. Veraar L. Weis J.-C. Zambrini
The book treats two topics in the theory of stochastic partial differential equations: space-regularity of solutions and existence of stochastic flows. The equations considered in the book are linear parabolic with multiplicative noise, like those arising in non-linear filtering or diffusion models in randomly moving media. Regularity theory in Sobolev spaces is extensively investigated, for homogeneous and non-homogeneous boundary value problems, with a detailed analysis of the new geometrical conditions on coefficients arising as a consequence of the stochaticity. The book provides an account of regularity results that may represent a useful reference for the researcher in stochastic partial differential equations. Regularity theory is then applied to prove the existence of stochastic flows. In spite of the variety of results on stochastic flows obtained by this method, several open problems are pointed out, with the hope of stimulating further research on this subject.
This volume brings together five contributions to mathematical fluid mechanics, a classical but still very active research field which overlaps with physics and engineering. The contributions cover not only the classical Navier-Stokes equations for an incompressible Newtonian fluid, but also generalized Newtonian fluids, fluids interacting with particles and with solids, and stochastic models. The questions addressed in the lectures range from the basic problems of existence of weak and more regular solutions, the local regularity theory and analysis of potential singularities, qualitative and quantitative results about the behavior in special cases, asymptotic behavior, statistical properties and ergodicity.
The book deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices.
Of the three lecture courses making up the CIME summer school on Fluid Dynamics at Cetraro in 2005 reflected in this volume, the first, due to Sergio Albeverio describes deterministic and stochastic models of hydrodynamics. In the second course, Franco Flandoli starts from 3D Navier-Stokes equations and ends with turbulence. Finally, Yakov Sinai, in the 3rd course, describes some rigorous mathematical results for multidimensional Navier-Stokes systems and some recent results on the one-dimensional Burgers equation with random forcing.
Written by leading experts in an emerging field, this book offers a unique view of the theory of stochastic partial differential equations, with lectures on the stationary KPZ equation, fully nonlinear SPDEs, and random data wave equations. This subject has recently attracted a great deal of attention, partly as a consequence of Martin Hairer's contributions and in particular his creation of a theory of regularity structures for SPDEs, for which he was awarded the Fields Medal in 2014. The text comprises three lectures covering: the theory of stochastic Hamilton-Jacobi equations, one of the most intriguing and rich new chapters of this subject; singular SPDEs, which are at the cutting edge of innovation in the field following the breakthroughs of regularity structures and related theories, with the KPZ equation as a central example; and the study of dispersive equations with random initial conditions, which gives new insights into classical problems and at the same time provides a surprising parallel to the theory of singular SPDEs, viewed from many different perspectives. These notes are aimed at graduate students and researchers who want to familiarize themselves with this new field, which lies at the interface between analysis and probability.
|
You may like...
|