Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book ushers in a new era of experimental and theoretical investigations into collective processes, structure formation, and self-organization of nuclear matter. It reports the results of experiments wherein for the first time the nuclei constituting our world (those displayed in Mendeleev's table as well as the super-heavy ones) have been artificially created. Pioneering breakthroughs are described, achieved at the Proton-21 Laboratory, Kiev, Ukraine, in a variety of new physical and technological directions.A detailed description of the main experiments, their analyses, and the interpretation of copious experimental data are given, along with the methodology governing key measurements and the processing algorithms of the data that empirically confirm the occurrence of macroscopic self-organizing processes leading to the nuclear transformations of various materials.
This volume tries to continue a tradition of reviews of the contemporary research on the foundations of modern physics begun by the volume on the Einstein- Podolsky-Rosen paradox that appeared a few years ago. (I) Its publication coin- cides with the hundredth anniversary of de Broglie's birth (1892), a very welcome superposition, given the lasting influence of the Einstein-de Broglie conception of wave-particle duality. The present book, however, contains papers based on a broad spectrum of basic ideas, some even opposite to those that Einstein and de Broglie would have liked. The order of the contributions in this book is alphabetical by first author's name. It is important here to stress the presence of three reviews of fundamental experimental data, by Hasselbach (electron interferometry), Rauch (neutron interferometry), and Tonomura (Aharonov-Bohm effect). Hasselbach reviews several interesting experiments performed in 1Ubingen with the electron biprism interferometer. Wave-particle duality is brought out in striking ways, e. g. , in the buildup of an interference pattern out of single events. The Sagnac effect for electrons is also discussed. The chapter by Rauch presents interesting results on wave-particle duality for neutrons. Of particular interest are the differences between stochastic and deterministic absorption in the neutron interferometer, and the concrete evidence for the quantum-mechanical 41T-symmetry of spinors. In the short chapter by Tonomura, conclusive evidence for the reality of the Aharonov- Bohm effect is reviewed, collected in experiments based on advanced technologies of electron holography and microlithography.
This book ushers in a new era of experimental and theoretical
investigations into collective processes, structure formation, and
self-organization of nuclear matter. It reports the results of
experiments wherein for the first time the nuclei constituting our
world (those displayed in Mendeleev's table as well as the
super-heavy ones) have been artificially created. Pioneering
breakthroughs are described, achieved at the Proton-21 Laboratory,
Kiev, Ukraine, in a variety of new physical and technological
directions. How to realize nucleosynthesis of stable nuclei in the
laboratory? Why are metallic meteorites of iron or nickel-iron?
Could the iron be nuclear fuel and could an iron star blow up as a
supernova? And what could be the energy source of such an
explosion? Is it possible to obtain nuclear energy from any
terrestrial substance without producing radioactivity? Do
super-heavy (Migdal's) nuclei exist, and is it possible to
synthesize them in the laboratory? What physical mechanisms could
one use to control nuclear transformations and particularly the
sign of the overall energy balance involved?
, (...) Ausfuhrlich setzt sich Selleri mit den verschiedenen Interpretationen und ihren Schwachstellen auseinander. Philosophische Exkurse sowie die Herleitung mancher Formel mit Hilfe des quantenmechanischen Formalismus fehlen nicht. Einen breiten Raum nimmt das Gedankenexperiment von Einstein, Podolsky und Rosen ein, welches in lobenswerter Scharfe analysiert wird."Bild der Wissenschaft
Die Debatte tiber die Grundlagen der Quantentheorie, die auf eine mehr als fiinfzigjiihrige Tradition zurtickblickt, war in zwei Perioden besonders intensiv, niimlich unmittelbar nach der Begrtindung der Quantentheorie und wiederum in den letzten Jahren. An die Frtihzeit der Quantenphysik erinnerte Max Born in seiner Rede, die er anliiBlich der Verleihung des Nobelpreises im Jahre 1954 hielt. Er beschrieb die tiefgreifende Meinungsverschiedenheit, die die bertihmtesten Quantentheoretiker in 1 zwei Lager schied: "Wenn ich sagte, die Physiker hiitten die damals von uns entwickelte Denkweise angenommen, so war ich nicht ganz korrekt: es gibt ein paar sehr bemerkenswerte Ausnahmen, und zwar gerade unter den Miinnern, die am meisten zum Aufbau der Quantentheorie beigetragen haben. Planck selbst gehorte zu den Skeptikern bis zu seinem Tode. Einstein, de Broglie und Schrodinger haben nicht aufgehort, das Unbefriedigende der statistischen Interpretation der Quanten- mechanik zu betonen. " Dieser intellektuelle Kampf betraf einige der grundlegendsten Fragen der gesamten Naturwissenschaft: existieren die atomaren Objekte unabhangig von der menschlichen Beobachtung und, wenn dies- der Fall ist, sind sie dann dem menschlichen Verstiindnis zugiinglich? 1m groBen und ganzen kann man sagen, daB die Kopenhagener und Gottinger Schulen (Bohr, Heisenberg, Born . . . ) diese Fragen ziemlich pessimistisch beantwor- teten. Niels Bohr befiirwortete beispielsweise den Gebrauch des Wortes "Phanomen" nur zur Beschreibung einer Messung, die notwendigerweise eine vollstandige Be- schreibung des MeBapparates mitenthielt und damit nicht das atomare Objekt selbst, sondern seine Wechselwirkung mit dem von Menschen gewahlten Apparate betraf.
|
You may like...
|