Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Computation in Neurons and Neural Systems contains the collected papers of the 1993 Conference on Computation and Neural Systems which was held between July 31--August 7, in Washington, DC. These papers represent a cross-section of the state-of-the-art research work in the field of computational neuroscience, and includes coverage of analysis and modeling work as well as results of new biological experimentation.
In recent years there has been tremendous activity in computational neuroscience resulting from two parallel developments. On the one hand, our knowledge of real nervous systems has increased dramatically over the years; on the other, there is now enough computing power available to perform realistic simulations of actual neural circuits. This is leading to a revolution in quantitative neuroscience, which is attracting a growing number of scientists from non-biological disciplines. These scientists bring with them expertise in signal processing, information theory, and dynamical systems theory that has helped transform our ways of approaching neural systems. New developments in experimental techniques have enabled biologists to gather the data necessary to test these new theories. While we do not yet understand how the brain sees, hears or smells, we do have testable models of specific components of visual, auditory, and olfactory processing. Some of these models have been applied to help construct artificial vision and hearing systems. Similarly, our understanding of motor control has grown to the point where it has become a useful guide in the development of artificial robots. Many neuroscientists believe that we have only scratched the surface, and that a more complete understanding of biological information processing is likely to lead to technologies whose impact will propel another industrial revolution. Neural Systems: Analysis and Modeling contains the collected papers of the 1991 Conference on Analysis and Modeling of Neural Systems (AMNS), and the papers presented at the satellite symposium on compartmental modeling, held July 23-26, 1992, in San Francisco, California. The papers included, present an update of the most recent developments in quantitative analysis and modeling techniques for the study of neural systems.
Computational neuroscience is best defined by its focus on understanding the nervous systems as a computational device rather than by a particular experimental technique. Accordinlgy, while the majority of the papers in this book describe analysis and modeling efforts, other papers describe the results of new biological experiments explicitly placed in the context of computational issues. The distribution of subjects in Computation and Neural Systems reflects the current state of the field. In addition to the scientific results presented here, numerous papers also describe the ongoing technical developments that are critical for the continued growth of computational neuroscience. Computation and Neural Systems includes papers presented at the First Annual Computation and Neural Systems meeting held in San Francisco, CA, July 26--29, 1992.
The recentexplosionofactivity inneural modelingseemsto have beendriven more by advances inthe theories and applicationsoflearning paradigms for artificial neural networks than by advances in our knowledge of real nervous systems. In the past few years, major conferences on neural networks and neural modeling have emerged and, appropriately, have focussed on technological exploitation of these advances. Sensingthat the recentleaps in both computational powerand knowledge ofthe nervous system may have setthe stage for a revolution intheoretical neurobiology, neuroscientists have welcomed thenew neural modeling; butmanyofthem would like tosee itdirected as heavily toward understanding of the nervou$ system as it is presently directed toward computertechnology and control-system engineering. Furthermore, some neuroscientists believe thattechnologists shouldnotbe satisfiedonly with exploiting or extending the recent advances in learning paradigms, that emerging knowledge about real nervous systems will suggest other, comparably valuable, paradigms forsignal processingand control. Ourmotive as organizers was to have a conference that focussed on both of these areas -- emerging modeling tools and concepts for neurobiologists, and emerging neurobiological concepts and neurobiological knowledge ofpotential use to technologists. Ourprinciple ofdesign was simple. We attempted to organize aconference withagroup ofspeakers that would be most illuminating and exciting to us and to our students. We succeeded. EdwinR. Lewis INTRODUCTION This volume contains the collected papers of the 1990 Conference on Analysis and ModelingofNeural Systems, held July 25-27, in Berkeley, California. There were 21 invited talks at the meeting, covering aspects ofanalysis and modeling from the subcellularlevel to the networklevel. Inaddition, thirty six posters were accepted forpresentation.
Computational neuroscience is best defined by its focus on understanding the nervous systems as a computational device rather than by a particular experimental technique. Accordinlgy, while the majority of the papers in this book describe analysis and modeling efforts, other papers describe the results of new biological experiments explicitly placed in the context of computational issues. The distribution of subjects in Computation and Neural Systems reflects the current state of the field. In addition to the scientific results presented here, numerous papers also describe the ongoing technical developments that are critical for the continued growth of computational neuroscience. Computation and Neural Systems includes papers presented at the First Annual Computation and Neural Systems meeting held in San Francisco, CA, July 26--29, 1992.
Computation in Neurons and Neural Systems contains the collected papers of the 1993 Conference on Computation and Neural Systems which was held between July 31--August 7, in Washington, DC. These papers represent a cross-section of the state-of-the-art research work in the field of computational neuroscience, and includes coverage of analysis and modeling work as well as results of new biological experimentation.
The recentexplosionofactivity inneural modelingseemsto have beendriven more by advances inthe theories and applicationsoflearning paradigms for artificial neural networks than by advances in our knowledge of real nervous systems. In the past few years, major conferences on neural networks and neural modeling have emerged and, appropriately, have focussed on technological exploitation of these advances. Sensingthat the recentleaps in both computational powerand knowledge ofthe nervous system may have setthe stage for a revolution intheoretical neurobiology, neuroscientists have welcomed thenew neural modeling; butmanyofthem would like tosee itdirected as heavily toward understanding of the nervou$ system as it is presently directed toward computertechnology and control-system engineering. Furthermore, some neuroscientists believe thattechnologists shouldnotbe satisfiedonly with exploiting or extending the recent advances in learning paradigms, that emerging knowledge about real nervous systems will suggest other, comparably valuable, paradigms forsignal processingand control. Ourmotive as organizers was to have a conference that focussed on both of these areas -- emerging modeling tools and concepts for neurobiologists, and emerging neurobiological concepts and neurobiological knowledge ofpotential use to technologists. Ourprinciple ofdesign was simple. We attempted to organize aconference withagroup ofspeakers that would be most illuminating and exciting to us and to our students. We succeeded. EdwinR. Lewis INTRODUCTION This volume contains the collected papers of the 1990 Conference on Analysis and ModelingofNeural Systems, held July 25-27, in Berkeley, California. There were 21 invited talks at the meeting, covering aspects ofanalysis and modeling from the subcellularlevel to the networklevel. Inaddition, thirty six posters were accepted forpresentation.
In recent years there has been tremendous activity in computational neuroscience resulting from two parallel developments. On the one hand, our knowledge of real nervous systems has increased dramatically over the years; on the other, there is now enough computing power available to perform realistic simulations of actual neural circuits. This is leading to a revolution in quantitative neuroscience, which is attracting a growing number of scientists from non-biological disciplines. These scientists bring with them expertise in signal processing, information theory, and dynamical systems theory that has helped transform our ways of approaching neural systems. New developments in experimental techniques have enabled biologists to gather the data necessary to test these new theories. While we do not yet understand how the brain sees, hears or smells, we do have testable models of specific components of visual, auditory, and olfactory processing. Some of these models have been applied to help construct artificial vision and hearing systems. Similarly, our understanding of motor control has grown to the point where it has become a useful guide in the development of artificial robots. Many neuroscientists believe that we have only scratched the surface, and that a more complete understanding of biological information processing is likely to lead to technologies whose impact will propel another industrial revolution. Neural Systems: Analysis and Modeling contains the collected papers of the 1991 Conference on Analysis and Modeling of Neural Systems (AMNS), and the papers presented at the satellite symposium on compartmental modeling, held July 23-26, 1992, in San Francisco, California. The papers included, present an update of the most recent developments in quantitative analysis and modeling techniques for the study of neural systems.
|
You may like...
|