Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This series, Finite Systems and Multiparticle Dynamics, is intended to provide timely reviews of current research topics, written in a style sufficiently pedagogic so as to allow a nonexpert to grasp the underlying ideas as well as understand technical details. The series is an outgrowth of our involvement with three interdis ciplinary activities, namely, those arising from the American Physical Society's Topical Group on Few Body Systems and Multiparticle Dynam ics, the series of Gordon Research Conferences first known by the title "Few Body Problems in Chemistry and Physics" and later renamed "Dynamics of Simple Systems in Chemistry and Physics," and the series of Sanibel Symposia, sponsored in part by the University of Florida. The vitality of these activities and the enthusiastic response to them by researchers in various subfields of physics and chemistry have convinced us that there is a place--even a need-for a series of timely reviews on topics of interest not only to a narrow band of experts but also to a broader, interdisciplinary readership. It is our hope that the emphasis on pedagogy will permit at least some of the books in the series to be useful in graduate-level courses. Rather than use the adjective "Few-Body" or "Simple" to modify the word "Systems" in the title, we have chosen "Finite. " It better expresses the wide range of systems with which the reviews of the series may deal."
This series, Finite Systems and Multipartide Dynamics, is intended to provide timely reviews of current research topics, written in a style sufficient ly pedagogic so as to allow a nonexpert to grasp the underlying ideas as well as understand technical details. The series is an outgrowth of our involvement with three interdisciplin ary activities, namely, those arising from the American Physical Society's Topical Group on Few-Body Systems and Multipartide Dynamics, the series of Gordon Research Conferences first known by the title "Few-Body Problems in Chemistry and Physics" and later renamed "Dynamics of Simple Systems in Chemistry and Physics," and the series of Sanibel Symposia, sponsored in part by the University of Florida. The vitality of these activities and the enthusiastic response to them by researchers in various subfields of physics and chemistry have convinced us that there is a place-even a need-for a series of timely reviews on topics of interest not only to a narrow band of experts but also to a broader, interdisciplinary readership. lt is our hope that the emphasis on pedagogy will permit at least some of the books in the series to be useful in graduate-level courses. Rather than use the adjective "Few-Body" or "Simple" to modify the word "Systems" in the title, we have chosen "Finite. " It better expresses the wide range of systems with which the reviews of the series may deal."
This series, Finite Systems and Multipartide Dynamics, is intended to provide timely reviews of current research topics, written in a style sufficient ly pedagogic so as to allow a nonexpert to grasp the underlying ideas as well as understand technical details. The series is an outgrowth of our involvement with three interdisciplin ary activities, namely, those arising from the American Physical Society's Topical Group on Few-Body Systems and Multipartide Dynamics, the series of Gordon Research Conferences first known by the title "Few-Body Problems in Chemistry and Physics" and later renamed "Dynamics of Simple Systems in Chemistry and Physics," and the series of Sanibel Symposia, sponsored in part by the University of Florida. The vitality of these activities and the enthusiastic response to them by researchers in various subfields of physics and chemistry have convinced us that there is a place-even a need-for a series of timely reviews on topics of interest not only to a narrow band of experts but also to a broader, interdisciplinary readership. lt is our hope that the emphasis on pedagogy will permit at least some of the books in the series to be useful in graduate-level courses. Rather than use the adjective "Few-Body" or "Simple" to modify the word "Systems" in the title, we have chosen "Finite. " It better expresses the wide range of systems with which the reviews of the series may deal.
This series, Finite Systems and Multiparticle Dynamics, is intended to provide timely reviews of current research topics, written in a style sufficiently pedagogic so as to allow a nonexpert to grasp the underlying ideas as well as understand technical details. The series is an outgrowth of our involvement with three interdis ciplinary activities, namely, those arising from the American Physical Society's Topical Group on Few Body Systems and Multiparticle Dynam ics, the series of Gordon Research Conferences first known by the title "Few Body Problems in Chemistry and Physics" and later renamed "Dynamics of Simple Systems in Chemistry and Physics," and the series of Sanibel Symposia, sponsored in part by the University of Florida. The vitality of these activities and the enthusiastic response to them by researchers in various subfields of physics and chemistry have convinced us that there is a place--even a need-for a series of timely reviews on topics of interest not only to a narrow band of experts but also to a broader, interdisciplinary readership. It is our hope that the emphasis on pedagogy will permit at least some of the books in the series to be useful in graduate-level courses. Rather than use the adjective "Few-Body" or "Simple" to modify the word "Systems" in the title, we have chosen "Finite. " It better expresses the wide range of systems with which the reviews of the series may deal.
The ideas and phenomena of the quantum world are strikingly unlike those encountered in our visual world. Surfing the Quantum World shows why and how this is so. It does this via a historical review and a gentle introduction to the fundamental principles of quantum theory, whose core concepts and symbolic representations are used to explain not only "ordinary" microscopic phenomena like the properties of the hydrogen atom and the structure of the Periodic Table of the Elements, but also a variety of mind-bending phenomena. Readers will learn that particles such as electrons and photons can behave like waves, allowing them to be in two places simultaneously, why white dwarf and neutron stars are gigantic quantum objects, how the maximum height of mountains has a quantum basis, and why quantum objects can tunnel through seemingly impenetrable barriers. Included among the various interpretational issues addressed is whether Schroedinger's cat is ever both dead and alive.
|
You may like...
|