Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.
The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of disease transmission models. It includes (i) an introduction to the main concepts of compartmental models including models with heterogeneous mixing of individuals and models for vector-transmitted diseases, (ii) a detailed analysis of models for important specific diseases, including tuberculosis, HIV/AIDS, influenza, Ebola virus disease, malaria, dengue fever and the Zika virus, (iii) an introduction to more advanced mathematical topics, including age structure, spatial structure, and mobility, and (iv) some challenges and opportunities for the future. There are exercises of varying degrees of difficulty, and projects leading to new research directions. For the benefit of public health professionals whose contact with mathematics may not be recent, there is an appendix covering the necessary mathematical background. There are indications which sections require a strong mathematical background so that the book can be useful for both mathematical modelers and public health professionals.
This book is an introduction to the principles and practice of mathematical modeling in the biological sciences, concentrating on applications in population biology, epidemiology, and resource management. The core of the book covers models in these areas and the mathematics useful in analyzing them, including case studies representing real-life situations. The emphasis throughout is on describing the mathematical results and showing students how to apply them to biological problems while highlighting some modeling strategies. A large number and variety of examples, exercises, and projects are included. Additional ideas and information may be found on a web site associated with the book. Senior undergraduates and graduate students as well as scientists in the biological and mathematical sciences will find this book useful. Carlos Castillo-Chavez is professor of biomathematics in the departments of biometrics, statistics, and theoretical and applied mechanics at Cornell University and a member of the graduate fields of applied mathematics, ecology and evolutionary biology, and epidemiology. H is the recepient of numerous awards including two White House Awards (1992 and 1997) and QEM Giant in Space Mentoring Award (2000). Fred Brauer is a Professor Emeritus of Mathematics at the University id Wisconsin, where he taught from 1960 to 1999, and has also been an Honorary Professor of Mathematics at the University of British Columbia since 1997.
The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.
Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).
Dynamical Systems for Biological Modeling: An Introduction prepares both biology and mathematics students with the understanding and techniques necessary to undertake basic modeling of biological systems. It achieves this through the development and analysis of dynamical systems. The approach emphasizes qualitative ideas rather than explicit computations. Some technical details are necessary, but a qualitative approach emphasizing ideas is essential for understanding. The modeling approach helps students focus on essentials rather than extensive mathematical details, which is helpful for students whose primary interests are in sciences other than mathematics need or want. The book discusses a variety of biological modeling topics, including population biology, epidemiology, immunology, intraspecies competition, harvesting, predator-prey systems, structured populations, and more. The authors also include examples of problems with solutions and some exercises which follow the examples quite closely. In addition, problems are included which go beyond the examples, both in mathematical analysis and in the development of mathematical models for biological problems, in order to encourage deeper understanding and an eagerness to use mathematics in learning about biology.
Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Major focus on stability theory and its applications to oscillation phenomena, self-excited oscillations and regulator problem of Lurie. Bibliography. Exercises.
|
You may like...
Nine Days - The Race to Save Martin…
Paul Kendrick, Stephen Kendrick
Paperback
Don't Upset ooMalume - A Guide To…
Hombakazi Mercy Nqandeka
Paperback
No Ocean Here - Stories in Verse About…
Sweta Srivastava Vikram
Hardcover
R511
Discovery Miles 5 110
The Politics Of Housing In (Post…
Kirsten Ruther, Martina Barker-Ciganikova, …
Hardcover
|