Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 18 of 18 matches in All Departments
In Commutative Algebra certain /-adic filtrations of Noetherian rings, i.e. the so-called Zariski rings, are at the basis of singularity theory. Apart from that it is mainly in the context of Homological Algebra that filtered rings and the associated graded rings are being studied not in the least because of the importance of double complexes and their spectral sequences. Where non-commutative algebra is concerned, applications of the theory of filtrations were mainly restricted to the study of enveloping algebras of Lie algebras and, more extensively even, to the study of rings of differential operators. It is clear that the operation of completion at a filtration has an algebraic genotype but a topological fenotype and it is exactly the symbiosis of Algebra and Topology that works so well in the commutative case, e.g. ideles and adeles in number theory or the theory of local fields, Puisseux series etc, .... . In Non commutative algebra the bridge between Algebra and Analysis is much more narrow and it seems that many analytic techniques of the non-commutative kind are still to be developed. Nevertheless there is the magnificent example of the analytic theory of rings of differential operators and 1J-modules a la Kashiwara-Shapira."
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Gad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of s9phistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
Proceedings of the NATO Advanced Study Institute, Antwerp, Belgium, August 2-12, 1983
This proceedings is composed of the papers resulting from the NATO work-shop "Perspectives in Ring Theory" and the work-shop "Geometry and Invariant The ory of Representations of Quivers" . Three reports on problem sessions have been induced in the part corresponding to the work-shop where they belonged. One more report on a problem session, the "lost" problem session, will be published elsewhere eventually. vii Acknowledgement The meeting became possible by the financial support of the Scientific Affairs Division of NATO. The people at this division have been very helpful in the orga nization of the meeting, in particular we commemorate Dr. Mario di Lullo, who died unexpectedly last year, but who has been very helpful with the organization of earlier meetings in Ring Theory. For additional financial support we thank the national foundation for scientific research (NFWO), the rector of the University of Antwerp, UIA, and the Belgian Ministry of Education. We also gladly acknowledge support from the Belgian Friends of the Hebrew University and the chairman Prof. P. Van Remoortere who honored Prof. S. Amitsur for his continuous contributions to the mathematical activities at the University of Antwerp. I thank the authors who contributed their paper(s) to this proceedings and the lecturers for their undisposable contributions towards the success of the work-shop. Finally I thank Danielle for allowing me to spoil another holiday period in favor of a congress."
"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."
This volume is based on the proceedings of the Hopf-Algebras and Quantum Groups conference at the Free University of Brussels, Belgium. It presents state-of-the-art papers - selected from over 65 participants representing nearly 20 countries and more than 45 lectures - on the theory of Hopf algebras, including multiplier Hopf algebras and quantum groups.
"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."
A valuable addition to the Lecture Notes in Pure and Applied Mathematics series, this reference results from a conference held in St. Petersburg, Russia, in honor of Dr. Z. Borevich. This volume is mainly devoted to the contributions related to the European Science Foundation workshop, organized under the framework of noncommuntative geometry and integrated in the Borevich meeting. The topics presented, including algebraic groups and representations, algebraic number theory, rings, and modules, are a timely distillation of recent work in the field. Featuring a wide range of international experts as contributors, this book is an ideal reference for mathematicians in algebra and algebraic geometry.
This work focuses on the association of methods from topology, category and sheaf theory, algebraic geometry, noncommutative and homological algebras, quantum groups and spaces, rings of differential operation, Cech and sheaf cohomology theories, and dimension theories to create a blend of noncommutative algebraic geometry. It offers a scheme theory that sustains the duality between algebraic geometry and commutative algebra to the noncommutative level.
This is the first book to be dedicated entirely to Drinfeld's quasi-Hopf algebras. Ideal for graduate students and researchers in mathematics and mathematical physics, this treatment is largely self-contained, taking the reader from the basics, with complete proofs, to much more advanced topics, with almost complete proofs. Many of the proofs are based on general categorical results; the same approach can then be used in the study of other Hopf-type algebras, for example Turaev or Zunino Hopf algebras, Hom-Hopf algebras, Hopfish algebras, and in general any algebra for which the category of representations is monoidal. Newcomers to the subject will appreciate the detailed introduction to (braided) monoidal categories, (co)algebras and the other tools they will need in this area. More advanced readers will benefit from having recent research gathered in one place, with open questions to inspire their own research.
Proceedings of the NATO Advanced Study Institute, Antwerp, Belgium, August 2-12, 1983
This proceedings is composed of the papers resulting from the NATO work-shop "Perspectives in Ring Theory" and the work-shop "Geometry and Invariant The ory of Representations of Quivers" . Three reports on problem sessions have been induced in the part corresponding to the work-shop where they belonged. One more report on a problem session, the "lost" problem session, will be published elsewhere eventually. vii Acknowledgement The meeting became possible by the financial support of the Scientific Affairs Division of NATO. The people at this division have been very helpful in the orga nization of the meeting, in particular we commemorate Dr. Mario di Lullo, who died unexpectedly last year, but who has been very helpful with the organization of earlier meetings in Ring Theory. For additional financial support we thank the national foundation for scientific research (NFWO), the rector of the University of Antwerp, UIA, and the Belgian Ministry of Education. We also gladly acknowledge support from the Belgian Friends of the Hebrew University and the chairman Prof. P. Van Remoortere who honored Prof. S. Amitsur for his continuous contributions to the mathematical activities at the University of Antwerp. I thank the authors who contributed their paper(s) to this proceedings and the lecturers for their undisposable contributions towards the success of the work-shop. Finally I thank Danielle for allowing me to spoil another holiday period in favor of a congress."
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Gad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of s9phistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
In Commutative Algebra certain /-adic filtrations of Noetherian rings, i.e. the so-called Zariski rings, are at the basis of singularity theory. Apart from that it is mainly in the context of Homological Algebra that filtered rings and the associated graded rings are being studied not in the least because of the importance of double complexes and their spectral sequences. Where non-commutative algebra is concerned, applications of the theory of filtrations were mainly restricted to the study of enveloping algebras of Lie algebras and, more extensively even, to the study of rings of differential operators. It is clear that the operation of completion at a filtration has an algebraic genotype but a topological fenotype and it is exactly the symbiosis of Algebra and Topology that works so well in the commutative case, e.g. ideles and adeles in number theory or the theory of local fields, Puisseux series etc, .... . In Non commutative algebra the bridge between Algebra and Analysis is much more narrow and it seems that many analytic techniques of the non-commutative kind are still to be developed. Nevertheless there is the magnificent example of the analytic theory of rings of differential operators and 1J-modules a la Kashiwara-Shapira."
The topic of this book, graded algebra, has developed in the past decade to a vast subject with new applications in noncommutative geometry and physics. Classical aspects relating to group actions and gradings have been complemented by new insights stemming from Hopf algebra theory. Old and new methods are presented in full detail and in a self-contained way. Graduate students as well as researchers in algebra, geometry, will find in this book a useful toolbox. Exercises, with hints for solution, provide a direct link to recent research publications. The book is suitable for courses on Master level or textbook for seminars.
In one exceptional volume, Abstract Algebra covers subject matter
typically taught over the course of two or three years and offers a
self-contained presentation, detailed definitions, and excellent
chapter-matched exercises to smooth the trajectory of learning
algebra from zero to one. Field-tested through advance use in the
ERASMUS educational project in Europe, this ambitious,
comprehensive book includes an original treatment of representation
of finite groups that avoids the use of semisimple ring theory and
explains sets, maps, posets, lattices, and other essentials of the
algebraic language; Peano's axioms and cardinality; groupoids,
semigroups, monoids, groups; and normal subgroups.
This volume is based on the proceedings of the Hopf-Algebras and Quantum Groups conference at the Free University of Brussels, Belgium. It presents state-of-the-art papers - selected from over 65 participants representing nearly 20 countries and more than 45 lectures - on the theory of Hopf algebras, including multiplier Hopf algebras and quantum groups.
A valuable addition to the Lecture Notes in Pure and Applied Mathematics series, this reference results from a conference held in St. Petersburg, Russia, in honor of Dr. Z. Borevich. This volume is mainly devoted to the contributions related to the European Science Foundation workshop, organized under the framework of noncommuntative geometry and integrated in the Borevich meeting. The topics presented, including algebraic groups and representations, algebraic number theory, rings, and modules, are a timely distillation of recent work in the field. Featuring a wide range of international experts as contributors, this book is an ideal reference for mathematicians in algebra and algebraic geometry.
|
You may like...
|