|
Showing 1 - 5 of
5 matches in All Departments
This book casts the theory of periods of algebraic varieties in the
natural setting of Madhav Nori's abelian category of mixed motives.
It develops Nori's approach to mixed motives from scratch, thereby
filling an important gap in the literature, and then explains the
connection of mixed motives to periods, including a detailed
account of the theory of period numbers in the sense of
Kontsevich-Zagier and their structural properties. Period numbers
are central to number theory and algebraic geometry, and also play
an important role in other fields such as mathematical physics.
There are long-standing conjectures about their transcendence
properties, best understood in the language of cohomology of
algebraic varieties or, more generally, motives. Readers of this
book will discover that Nori's unconditional construction of an
abelian category of motives (over fields embeddable into the
complex numbers) is particularly well suited for this purpose.
Notably, Kontsevich's formal period algebra represents a torsor
under the motivic Galois group in Nori's sense, and the period
conjecture of Kontsevich and Zagier can be recast in this setting.
Periods and Nori Motives is highly informative and will appeal to
graduate students interested in algebraic geometry and number
theory as well as researchers working in related fields. Containing
relevant background material on topics such as singular cohomology,
algebraic de Rham cohomology, diagram categories and rigid tensor
categories, as well as many interesting examples, the overall
presentation of this book is self-contained.
This book casts the theory of periods of algebraic varieties in the
natural setting of Madhav Nori's abelian category of mixed motives.
It develops Nori's approach to mixed motives from scratch, thereby
filling an important gap in the literature, and then explains the
connection of mixed motives to periods, including a detailed
account of the theory of period numbers in the sense of
Kontsevich-Zagier and their structural properties. Period numbers
are central to number theory and algebraic geometry, and also play
an important role in other fields such as mathematical physics.
There are long-standing conjectures about their transcendence
properties, best understood in the language of cohomology of
algebraic varieties or, more generally, motives. Readers of this
book will discover that Nori's unconditional construction of an
abelian category of motives (over fields embeddable into the
complex numbers) is particularly well suited for this purpose.
Notably, Kontsevich's formal period algebra represents a torsor
under the motivic Galois group in Nori's sense, and the period
conjecture of Kontsevich and Zagier can be recast in this setting.
Periods and Nori Motives is highly informative and will appeal to
graduate students interested in algebraic geometry and number
theory as well as researchers working in related fields. Containing
relevant background material on topics such as singular cohomology,
algebraic de Rham cohomology, diagram categories and rigid tensor
categories, as well as many interesting examples, the overall
presentation of this book is self-contained.
Friedrich Jonas' zweibandige Geschichte der Soziologie bietet einen
fundierten ideengeschichtlichen UEberblick uber die Vorlaufer, die
Entstehung und den Verlauf der Soziologie im internationalen
Kontext. Im ersten Band werden die zentralen Gesellschaftslehren in
der Aufklarung, im Idealismus, Liberalismus, Sozialismus und
Positivismus dargestellt und eroertert. Im zweiten Band werden die
geistesgeschichtlichen Entwicklungen der Soziologie in einzelnen
Landern vorgestellt. Dadurch entsteht ein beeindruckender
UEberblick uber die Geschichte der soziologischen Denkweisen in
Mitteleuropa und den USA, getreu Friedrich Jonas' Motto: "Die
Geschichte der Soziologie hoert nicht auf, wenn das jeweils letzte
Kapitel zu Ende geschrieben ist. [...] Als begriffene Geschichte
ist sie die Quelle der Erneuerung und Lebendigkeit, ohne die die
Wissenschaft nur ein kraftloser und irrelevanter Schatten ihrer
selbst ware."
Friedrich Jonas' zweibandige Geschichte der Soziologie bietet einen
fundierten ideengeschichtlichen UEberblick uber die Vorlaufer, die
Entstehung und den Verlauf der Soziologie im internationalen
Kontext. Im ersten Band werden die zentralen Gesellschaftslehren in
der Aufklarung, im Idealismus, Liberalismus, Sozialismus und
Positivismus dargestellt und eroertert. Im zweiten Band werden die
geistesgeschichtlichen Entwicklungen der Soziologie in einzelnen
Landern vorgestellt. Dadurch entsteht ein beeindruckender
UEberblick uber die Geschichte der soziologischen Denkweisen in
Mitteleuropa und den USA, getreu Friedrich Jonas' Motto: "Die
Geschichte der Soziologie hoert nicht auf, wenn das jeweils letzte
Kapitel zu Ende geschrieben ist. [...] Als begriffene Geschichte
ist sie die Quelle der Erneuerung und Lebendigkeit, ohne die die
Wissenschaft nur ein kraftloser und irrelevanter Schatten ihrer
selbst ware."
|
|