![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a non-constant harmonic mapping X: \Omega\to\R DEGREES3 which is conformally parametrized on \Omega\subset\R DEGREES2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Bjorlings initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateaus problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsches uniqueness theorem and Tomis finiteness result. In addition, a theory of unstable solutions of Plateaus problems is developed which is based on Courants mountain pass lemma. Furthermore, Dirichlets problem for nonparametric H-surfaces is solved, using the solution of Plateaus problem for H-surfaces and the pertinent estimates."
This two-volume textbook provides comprehensive coverage of partial differential equations, spanning elliptic, parabolic, and hyperbolic types in two and several variables. In this first volume, special emphasis is placed on geometric and complex variable methods involving integral representations. The following topics are treated: integration and differentiation on manifolds foundations of functional analysis Brouwer's mapping degree generalized analytic functions potential theory and spherical harmonics linear partial differential equations This new second edition of this volume has been thoroughly revised and a new section on the boundary behavior of Cauchy's integral has been added. The second volume will present functional analytic methods and applications to problems in differential geometry. This textbook will be of particular use to graduate and postgraduate students interested in this field and will be of interest to advanced undergraduate students. It may also be used for independent study."
This two-volume textbook provides comprehensive coverage of partial differential equations, spanning elliptic, parabolic, and hyperbolic types in two and several variables. In this second volume, special emphasis is placed on functional analytic methods and applications to differential geometry. The following topics are treated: solvability of operator equations in Banach spaceslinear operators in Hilbert spaces and spectral theory Schauder's theory of linear elliptic differential equations weak solutions of differential equationsnonlinear partial differential equations and characteristicsnonlinear elliptic systemsboundary value problems from differential geometry This new second edition of this volume has been thoroughly revised and a new chapter on boundary value problems from differential geometry has been added. In the first volume, partial differential equations by integral representations are treated in a classical way. This textbook will be of particular use to graduate and postgraduate students interested in this field and will be of interest to advanced undergraduate students. It may also be used for independent study."
Das zweib ndige Lehrbuch behandelt das Gebiet der partiellen Differentialgleichungen umfassend und anschaulich. Der Autor stellt in Band 2 funktionalanalytische L sungsmethoden vor und erl utert u. a. die L sbarkeit von Operatorgleichungen im Banachraum, lineare Operatoren im Hilbertraum und Spektraltheorie, die Schaudersche Theorie linearer elliptischer Differentialgleichungen sowie schwache L sungen elliptischer Differentialgleichungen.
Dieses zweibAndige Lehrbuch stellt das Gesamtgebiet der
partiellen Differentialgleichungen - vom elliptischen,
parabolischen und hyperbolischen Typ - in zwei und mehreren
VerAnderlichen vor. Im vorliegenden ersten Band werden folgende
Themen behandelt: Integration auf Mannigfaltigkeiten,
funktionalanalytische Grundlagen, Brouwerscher Abbildungsgrad,
verallgemeinerte analytische Funktionen, Potentialtheorie und
Kugelfunktionen, lineare partielle Differentialgleichungen. WAhrend
in diesem Band die partiellen Differentialgleichungen mit
Integraldarstellungen gelAst werden, sollen im nAchsten Band
funktionalanalytische LAsungsmethoden vorgestellt werden.
In diesem Lehrbuch wird der Spektralsatz fur selbstadjungierte Operatoren aus dem Resultat der Linearen Algebra uber die Diagonalisierung Hermitescher Matrizen hergeleitet. Dabei werden Lebesgue-Stieltjes-Integrale verwendet und der Auswahl- sowie der Konvergenzsatz von Helly uber monotone Funktionen bereitgestellt. Wir konstruieren die Spektralschar durch eine technisch aufwandige Approximation, wobei die Stieltjes-Umkehrformel im Zentrum des Beweises steht. Ein Ergebnis hiervon ist, dass selbstadjungierte Operatoren nicht nur ein diskretes, sondern auch ein kontinuierliches Spektrum besitzen. Die auftretenden Streueigenwerte koennen hierbei nicht durch Variationsmethoden gewonnen werden. Dann wenden wir uns der zentralen Frage zu, welche elliptischen Differentialoperatoren eine selbstadjungierte Fortsetzung besitzen und somit im Geltungsbereich des Spektralsatzes liegen. Hier unterscheiden wir zwischen stabilen elliptischen Differentialoperatoren auf beschrankten Gebieten und denen auf dem ganzen Raum, wie etwa dem Schroedingeroperator. Auch Laplace-Beltrami-Operatoren und der Schwarzsche Operator fur Minimalflachen werden im obigen Sinne als selbstadjungiert erkannt. Am Ende dieses Buches geben wir eine Einfuhrung in die Stoerungstheorie selbstadjungierter Operatoren. Hier weisen wir die analytische Abhangigkeit der Spektralschar vom Stoerungsparameter nach. Dieses Werk zur Spektraltheorie ist insbesondere fur das fortgeschrittene Mathematik- und Physikstudium geeignet, Kenntnisse in der Funktionalanalysis und der Theorie elliptischer Differentialgleichungen werden vorausgesetzt.
|
You may like...
Neoclassical Realist Theory of…
Norrin M. Ripsman, Jeffrey W. Taliaferro, …
Hardcover
R3,561
Discovery Miles 35 610
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
(1)
Semiconductor Nanomaterials for Flexible…
Yugang Sun, John A. Rogers
Paperback
|