Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This textbook offers an accessible and comprehensive overview of statistical estimation and inference that reflects current trends in statistical research. It draws from three main themes throughout: the finite-sample theory, the asymptotic theory, and Bayesian statistics. The authors have included a chapter on estimating equations as a means to unify a range of useful methodologies, including generalized linear models, generalized estimation equations, quasi-likelihood estimation, and conditional inference. They also utilize a standardized set of assumptions and tools throughout, imposing regular conditions and resulting in a more coherent and cohesive volume. Written for the graduate-level audience, this text can be used in a one-semester or two-semester course.
Modern astronomical research faces a vast range of statistical issues which have spawned a revival in methodological activity among astronomers. The Statistical Challenges in Modern Astronomy II conference, held in June 1996 at the Pennsylvania State University five years after the first conference, brought astronomers and statisticians together to discuss methodological issues of common interest. Time series analysis, image analysis, Bayesian methods, Poisson processes, nonlinear regression, maximum likelihood, multivariate classification, and wavelet and multiscale analyses were important themes. Astronomers frequently encounter troublesome situations such as heteroscedastic weighting of data, unevenly spaced time series, and selection effects leading to censoring and truncation. Many problems were introduced at the conference in the context of large-scale astronomical projects inlcuding LIGO, AXAF, XTE, Hipparcos, and digitized sky surveys.This volume will be of interest to researchers and advanced students in both fields-astronomers who seek exposure to recent developments in statistics, and statisticians interested in confronting new problems. It is edited by two faculty members of the Pennsylvania State University who have a long-standing cross-disciplinary collaboration and jointly authored the recent introductory monograph "Astrostatics." G.J. Babu is Professor of Statistics, Fellow of the Institute of Mathematical Statistics, and Associate Editor of the Journal of Statistical Planning & Inference and the Journal of Nonparametric Statistics. Eric D. Feigelson is Professor of Astronomoy and Astrophysics.
Modern astronomical research faces a vast range of statistical issues which have spawned a revival in methodological activity among astronomers. The Statistical Challenges in Modern Astronomy II conference brought astronomers and statisticians together to discuss methodological issues of common interest. Time series analysis, image analysis, Bayesian methods, Poisson processes, nonlinear regression, maximum likelihood, multivariate classification, and wavelet and multiscale analyses were all important themes. Many problems were introduced at the conference in the context of large-scale astronomical projects including LIGO, AXAF, XTE, Hipparcos, and digitised sky surveys. As such, this volume will be of interest to researchers and advanced students in both fields - astronomers seeking exposure to recent developments in statistics, and statisticians interested in confronting new problems.
Modern astronomy has been characterized by an enormous growth in data acquisition - from new technologies in telescopes, detectors, and computation. One can now compile catalogs of tens or hundreds of millions of stars or galaxies and databases from satellite-based observations are reaching terabit proportions. This wealth of data gives rise to statistical challenges not previously encountered in astronomy. This book is the result of a workshop held at Pennsylvania State University in August 1991 that brought together leading astronomers and statisticians to consider statistical challenges encountered in modern astronomical research. The chapters have all been thoroughly revised in the light of the discussions at the conference, and some of the lively discussion is recorded here as well.
Modern astronomical research is beset with a vast range of statistical challenges, ranging from reducing data from megadatasets to characterizing an amazing variety of variable celestial objects or testing astrophysical theory. Linking astronomy to the world of modern statistics, this volume is a unique resource, introducing astronomers to advanced statistics through ready-to-use code in the public domain R statistical software environment. The book presents fundamental results of probability theory and statistical inference, before exploring several fields of applied statistics, such as data smoothing, regression, multivariate analysis and classification, treatment of nondetections, time series analysis, and spatial point processes. It applies the methods discussed to contemporary astronomical research datasets using the R statistical software, making it invaluable for graduate students and researchers facing complex data analysis tasks. A link to the author's website for this book can be found at www.cambridge.org/msma. Material available on their website includes datasets, R code and errata. Visit the author's homepage at http: //astrostatistics.psu.edu for more materials.
|
You may like...
Ratels Aan Die Lomba - Die Storie Van…
Leopold Scholtz
Paperback
(4)
Palaces Of Stone - Uncovering Ancient…
Mike Main, Thomas Huffman
Paperback
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
(7)
1 Recce: Volume 3 - Through Stealth Our…
Alexander Strachan
Paperback
|