0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Hardcover, 1st ed. 2016):... Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Hardcover, 1st ed. 2016)
G.J. Viljoen, A.G. Luckins, I. Naletoski
R1,521 Discovery Miles 15 210 Ships in 18 - 22 working days

This manuscript discusses the potentials of the approaches as mentioned below to monitor the AIVs in WMW. Molecular diagnostic platforms enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies can be used to determine the bird species through DNA barcoding, enabling non-invasive research on the epidemiology of the disease. Wild migratory waterfowl (WMW) play significant role in the transmission of avian influenza viruses (AIVs) on large distances. Understanding bird migrations may therefore significantly contribute towards understanding of the disease epidemiology, however most conventional approaches to trace WMW migrations are based on capturing, tagging (mostly ringing or GPS devices) and their re-capturing to link the departure and arrival places. Stable isotope ratios in metabolically inert tissues (feathers, beaks, claws) reflect the ratios present at the point of intake (drinking or feeding), thus enabling for tracing bird origins at stopover places. Molecular diagnostic platforms such as the polymerase chain reaction (PCR) enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies (genetic sequencing) can be used to determine the bird species through DNA barcoding. Simple and easy collection of feather and fecal samples at the stopover places may generate a full information package on which species of WMW carries the AIVs (PCR+DNA barcoding on the feces), as well as the origin of these species (SI+DNA barcoding on the feathers). Therefore, such approaches enable for research on the epidemiology and the ecology of the AIVs in WMW using a non-invasive platform, which does not require capturing of WMW. This manuscript discusses the potentials of these approaches to monitor the AIVs in WMW. p>

Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Paperback, Softcover reprint... Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases - An Introductory Guide (Paperback, Softcover reprint of the original 1st ed. 2016)
G.J. Viljoen, A.G. Luckins, I. Naletoski
R1,529 Discovery Miles 15 290 Ships in 18 - 22 working days

This manuscript discusses the potentials of the approaches as mentioned below to monitor the AIVs in WMW. Molecular diagnostic platforms enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies can be used to determine the bird species through DNA barcoding, enabling non-invasive research on the epidemiology of the disease. Wild migratory waterfowl (WMW) play significant role in the transmission of avian influenza viruses (AIVs) on large distances. Understanding bird migrations may therefore significantly contribute towards understanding of the disease epidemiology, however most conventional approaches to trace WMW migrations are based on capturing, tagging (mostly ringing or GPS devices) and their re-capturing to link the departure and arrival places. Stable isotope ratios in metabolically inert tissues (feathers, beaks, claws) reflect the ratios present at the point of intake (drinking or feeding), thus enabling for tracing bird origins at stopover places. Molecular diagnostic platforms such as the polymerase chain reaction (PCR) enable for accurate detection of the AIVs in the feces of infected birds. Similar technologies (genetic sequencing) can be used to determine the bird species through DNA barcoding. Simple and easy collection of feather and fecal samples at the stopover places may generate a full information package on which species of WMW carries the AIVs (PCR+DNA barcoding on the feces), as well as the origin of these species (SI+DNA barcoding on the feathers). Therefore, such approaches enable for research on the epidemiology and the ecology of the AIVs in WMW using a non-invasive platform, which does not require capturing of WMW. This manuscript discusses the potentials of these approaches to monitor the AIVs in WMW. p>

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Extracellular Matrix and Egg Coats…
Eveline Litscher, Paul M. Wassarman Hardcover R4,022 Discovery Miles 40 220
How to Do Things with Fictions
Joshua Landy Hardcover R2,224 Discovery Miles 22 240
Advances in Genetics, Volume 107
Dhavendra Kumar Hardcover R3,723 Discovery Miles 37 230
Senescence in Humans
Brandon Chesser Hardcover R2,514 R2,292 Discovery Miles 22 920
Regeneration: Stem Cells and Beyond
Ellen Heber-Katz Hardcover R2,666 Discovery Miles 26 660
Systems Medicine - Integrative…
Olaf Wolkenhauer Hardcover R32,235 Discovery Miles 322 350
The Traditional Tunes of the Child…
Bertrand Harris Bronson Hardcover R1,017 Discovery Miles 10 170
Dartmoor
Sheet map, folded R484 R439 Discovery Miles 4 390
We Never Knew Just What It Was ... The…
Mike Murphey Hardcover R681 R615 Discovery Miles 6 150
Cycle Climbs Collect and Scratch Print
Sheet map, rolled R513 R462 Discovery Miles 4 620

 

Partners