Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book is a comprehensive state-of-the-knowledge summation of shock wave reflection phenomena from a phenomenological point of view. It includes a thorough introduction to oblique shock wave reflections, dealing with both regular and Mach types. It also covers in detail the corresponding two- and three-shock theories. The book moves on to describe reflection phenomena in a variety of flow types, as well as providing the resolution of the Neumann paradox.
High-speed impact dynamics is of interest in the fundamental sciences, e.g., astrophysics and space sciences, and has a number of important applications in military technologies, homeland security and engineering. When compared with experiments or numerical simulations, analytical approaches in impact mechanics only seldom yield useful results. However, when successful, analytical approaches allow us to determine general laws that are not only important in themselves but also serve as benchmarks for subsequent numerical simulations and experiments. The main goal of this monograph is to demonstrate the potential and effectiveness of analytical methods in applied high-speed penetration mechanics for two classes of problem. The first class of problem is shape optimization of impactors penetrating into ductile, concrete and some composite media. The second class of problem comprises investigation of ballistic properties and optimization of multi-layered shields, including spaced and two-component ceramic shields. Despite the massive use of mathematical techniques, the obtained results have a clear engineering meaning and are presented in an easy-to-use form. One of the chapters is devoted solely to some common approximate models, and this is the first time that a comprehensive description of the localized impactor/medium interaction approach is given. In the monograph the authors present systematically their theoretical results in the field of high-speed impact dynamics obtained during the last decade which only partially appeared in scientific journals and conferences proceedings.
This unique compendium contains a vast systematized data of 14,000 experiments on high-velocity penetration into metals, concrete, reinforced concrete, and geological media which were published in the open literature (journal papers, reports, conference proceedings) during the last 70 years. Data presented in this edition are related to the initial and final stages of penetration and include: parameters which characterize mechanical and geometric properties of the striker and the shield; striking and residual velocities of projectile or depth of penetration; changes of mass and size of projectile; angles that determine the initial and residual position of the projectile; ballistic limit velocity; basic characteristics of plug and deformation of the shield.Unified form of data representation and common notations are used throughout the book. All information is presented in numerical form in SI units. The book also contains indices which allow a fast search of the authors' publications and related experiments. Theoreticians, design engineers and experimentalists will find this handbook a valuable reference material.
This important monograph is the first comprehensive compendium of engineering models used in high-speed penetration mechanics.The book consists of two parts. The first part (more than a quarter of the book's content) is in fact a handbook giving a very detailed summary of the engineering models used for the analysis of high-speed penetration of rigid projectiles into various media (concrete, metals, geological media). The second part of the book demonstrates the possibilities and efficiency of using approximate models for investigating traditional and nontraditional problems of penetration mechanics.Different chapters in the books are devoted to different classes of problems and can be read independently. Each chapter is self-contained, which includes a comprehensive literature survey of the topic, and carries a list of used notations. The bibliography includes more than 700 references.This monograph is a reliable and indispensable reference guide for anyone interested in using engineering models in high-speed penetration mechanics.
These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference for the participants of the ISSW30 and anyone interested in these fields.
High-speed impact dynamics is of interest in the fundamental sciences, e.g., astrophysics and space sciences, and has a number of important applications in military technologies, homeland security and engineering. When compared with experiments or numerical simulations, analytical approaches in impact mechanics only seldom yield useful results. However, when successful, analytical approaches allow us to determine general laws that are not only important in themselves but also serve as benchmarks for subsequent numerical simulations and experiments. The main goal of this monograph is to demonstrate the potential and effectiveness of analytical methods in applied high-speed penetration mechanics for two classes of problem. The first class of problem is shape optimization of impactors penetrating into ductile, concrete and some composite media. The second class of problem comprises investigation of ballistic properties and optimization of multi-layered shields, including spaced and two-component ceramic shields. Despite the massive use of mathematical techniques, the obtained results have a clear engineering meaning and are presented in an easy-to-use form. One of the chapters is devoted solely to some common approximate models, and this is the first time that a comprehensive description of the localized impactor/medium interaction approach is given. In the monograph the authors present systematically their theoretical results in the field of high-speed impact dynamics obtained during the last decade which only partially appeared in scientific journals and conferences proceedings.
This book is a comprehensive state-of-the-knowledge summation of shock wave reflection phenomena from a phenomenological point of view. It includes a thorough introduction to oblique shock wave reflections, dealing with both regular and Mach types. It also covers in detail the corresponding two- and three-shock theories. The book moves on to describe reflection phenomena in a variety of flow types, as well as providing the resolution of the Neumann paradox.
This two-volume, 1100 pages, 38 chapters book is a significantly expanded, revised and updated version of the monograph by the authors published in 2013 (Ben-Dor, G, Dubinsky, A, Elperin, T, 'High Speed Penetration Dynamics: Engineering Models and Methods,' Singapore: World Scientific Publishing Company). The contents increased by 60%, the number of titles in bibliography doubled and reached 1600; and the scope covers a range of new topics related to hypervelocity penetration, along with high-speed impact.Presented material is structured into two parts. The first part includes description and analysis of practically all known engineering models for calculating high-speed penetration of projectiles into concrete, metals, geological shields, adobe, and gelatine.The second part focuses on the use of approximate models for solving conventional and non-standard problems of penetration mechanics including prediction and optimization of protective properties of monolithic and multi-layered shields against high-speed projectiles and space debris; shape optimization of high-speed projectiles penetrating into various media; modelling of penetration and optimal control of penetrators equipped with jet thrusters; and investigation of the efficiency and optimization of segmented projectiles. The book includes comprehensive overviews on basic classes of problems in high-speed penetration mechanics.This is a indispensable reference guide for scientists, engineers, and students specializing in the field of high-speed and hypervelocity penetration mechanics.
|
You may like...
Trusted Computing Platforms - TPM2.0 in…
Graeme Proudler, Liqun Chen, …
Hardcover
R4,933
Discovery Miles 49 330
New Frontiers in Cryptography - Quantum…
Khaled Salah Mohamed
Hardcover
R3,508
Discovery Miles 35 080
Internet of Things, Artificial…
R. Lakshmana Kumar, Yichuan Wang, …
Hardcover
R4,996
Discovery Miles 49 960
Analysis, Cryptography And Information…
Panos M. Pardalos, Nicholas J. Daras, …
Hardcover
R2,473
Discovery Miles 24 730
System-on-Chip Architectures and…
Maire McLoone, John V. McCanny
Hardcover
R2,888
Discovery Miles 28 880
|