Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Crystallography is an interdisciplinary science covering a wide
area, from biology to earth sciences, mathematics and materials
science. Its role is growing, owing to the contribution
crystallography can offer to the understanding of such diverse
fields as biological structures, high-temperature superconductors,
mineral properties, and phase transitions. The book describes both
the theoretical bases and applications of different areas
interacting with crystallography. As with the first and second
editions, it is organized as a collection of chapters written by
recognized specialists, with all contributions being harmonized
into a unified whole. The main text is devoted to the presentation
of basics; the appendices deal with specialist aspects. In this
third edition topics have been updated so as to document the
present state of the art: emphasis is placed upon areas of current
research.
Crystallography is an interdisciplinary science covering a wide
area, from biology to earth sciences, mathematics and materials
science. Its role is growing, owing to the contribution
crystallography can offer to the understanding of such diverse
fields as biological structures, high-temperature superconductors,
mineral properties, and phase transitions. The book describes both
the theoretical bases and applications of different areas
interacting with crystallography. As with the first and second
editions, it is organized as a collection of chapters written by
recognized specialists, with all contributions being harmonized
into a unified whole. The main text is devoted to the presentation
of basics; the appendices deal with specialist aspects. In this
third edition topics have been updated so as to document the
present state of the art: emphasis is placed upon areas of current
research.
Hydrogen bond (H-bond) effects are known: it makes sea water iquid,
joins cellulose microfibrils in trees, shapes DNA nto genes and
polypeptide chains into wool, hair, muscles or enzymes. Its true
nature is less known and we may still wonder why O-H...O bond
energies range from less than 1 to more than 30 kcal/mol without
apparent reason. This H-bond puzzle is re-examined here from its
very beginning and presented as an inclusive compilation of
experimental H-bond energies and geometries.
Hydrogen bond (H-bond) effects are known: it makes sea water liquid, joins cellulose microfibrils in trees, shapes DNA into genes and polypeptide chains into wool, hair, muscles or enzymes. Its true nature is less known and we may still wonder why O-H...O bond energies range from less than 1 to more than 30 kcal/mol without apparent reason. This H-bond puzzle is re-examined here from its very beginning on the ground of an inclusive compilation of experimental H-bond energies and geometries. New concepts emerge from this analysis: new classes of systematically strong H-bonds (CAHBs and RAHBs: charge- and resonance-assisted H-bonds); full H-bond classification in six classes (the six chemical leitmotifs); and assessment of the covalent nature of strong H-bonds. This leads to three distinct but inter-consistent models able to rationalize the H-bond and predict its strength, based on classical VB theory, matching of donor-acceptor acid-base parameters (PA or pKa), or shape of the H-bond proton-transfer pathway. Applications survey a number of systems where strong H-bonds play an important functional role, namely drug-receptor binding, enzymatic catalysis, ion-transport through cell membranes, crystal design and molecular mechanisms of functional materials.
|
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|