![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Classical boundary integral equations arising from the potential theory and acoustics (Laplace and Helmholtz equations) are derived. Using the parametrization of the boundary these equations take a form of periodic pseudodifferential equations. A general theory of periodic pseudodifferential equations and methods of solving are developed, including trigonometric Galerkin and collocation methods, their fully discrete versions with fast solvers, quadrature and spline based methods. The theory of periodic pseudodifferential operators is presented in details, with preliminaries (Fredholm operators, periodic distributions, periodic Sobolev spaces) and full proofs. This self-contained monograph can be used as a textbook by graduate/postgraduate students. It also contains a lot of carefully chosen exercises.
An attractive book on the intersection of analysis and numerical analysis, deriving classical boundary integral equations arising from the potential theory and acoustics. This self-contained monograph can be used as a textbook by graduate/postgraduate students. It also contains a lot of carefully chosen exercises.
The final aim of the book is to construct effective discretization methods to solve multidimensional weakly singular integral equations of the second kind on a region of Rn e.g. equations arising in the radiation transfer theory. To this end, the smoothness of the solution is examined proposing sharp estimates of the growth of the derivatives of the solution near the boundary G. The superconvergence effect of collocation methods at the collocation points is established. This is a book for graduate students and researchers in the fields of analysis, integral equations, mathematical physics and numerical methods. No special knowledge beyond standard undergraduate courses is assumed.
|
![]() ![]() You may like...
|