Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1-4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors' original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers and Chapter 9, which addresses various perturbational aspects in contact problems and introduces the sensitivity of articular contact mechanics. This book is intended for advanced undergraduate and graduate students, researchers in the area of biomechanics, and engineers interested and involved in the analysis and design of thin-layer structures.
This book presents a comprehensive and unifying approach to analytical identification of material properties of biological materials. Focusing on depth-sensing indentation testing, pipette aspiration testing, and torsion of soft tissues, it discusses the following important aspects in detail: damping, adhesion, thickness effect, substrate effect, elastic inhomogeneity effect, and biphasic effect. This book is intended for advanced undergraduate and graduate students, researchers in the area of biomechanics as well as for biomedical engineers interested in contact problems and involved in inverse materials parameters prediction analysis.
This book presents a comprehensive and unifying approach to analytical identification of material properties of biological materials. Focusing on depth-sensing indentation testing, pipette aspiration testing, and torsion of soft tissues, it discusses the following important aspects in detail: damping, adhesion, thickness effect, substrate effect, elastic inhomogeneity effect, and biphasic effect. This book is intended for advanced undergraduate and graduate students, researchers in the area of biomechanics as well as for biomedical engineers interested in contact problems and involved in inverse materials parameters prediction analysis.
This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers and Chapter 9, which addresses various perturbational aspects in contact problems and introduces the sensitivity of articular contact mechanics. This book is intended for advanced undergraduate and graduate students, researchers in the area of biomechanics, and engineers interested and involved in the analysis and design of thin-layer structures.
The monograph deals with methods to determine mechanical properties and evaluate the flow curve of ductile materials from the tensile test. It presents classical hypotheses concerning the onset of neck creation as well as the state of the art in determining the mechanical properties from the tensile test, with emphasis on the consequences of the neck formation. It revises derivations of formulae for the stress distribution in the minimal cross-section of the axisymmetrical specimen in the classical approaches proposed by Bridgman, Davidenkov / Spiridonova and Siebel as well as in the less famous formulae derived by Szczepinski and Malinin / Petrosjan. The revision is completed with solutions evaluated by the authors. In the monograph, the simplifying assumptions utilised in the classical approaches were carefully verified by numerical simulations accompanied by theoretical analysis. Errors imposed in the evaluation of the average axial stress acting on the minimal cross-section as a result of every particular simplification are estimated. The accuracy of all formulae to evaluate the flow curve is discussed. The significance of a high accurate determination can be seen in the context of numerical simulation (e.g. finite element computations), where the total error and accuracy is partly based on the accuracy of the material input.
|
You may like...
|