Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Polymer-based fibre-reinforced composites FRC's have now come out as a major class of structural materials being used or regarded as substituent's for metals in several critical components in space, automotive and other industries (marine, and sports goods) owing to their low density, strength-weight ratio, and fatigue strength. FRC's have several commercial as well as industrial applications ranging from aircraft, space, automotive, sporting goods, marine, and infrastructure. The above-mentioned applications of FRC's clearly reveal that FRC's have the potential to be used in a broad range of different engineering fields with the added advantages of low density, and resistance to corrosion compared to conventional metallic and ceramic composites. However, for scientists/researchers/R&D's to fabricate FRC's with such potential there should be careful and precise design followed by suitable process development based on properties like mechanical, physical, and thermal that are unique to each application. Hence the last few decades have witnessed considerable research on fibre reinforced composites. Fibre Reinforced Composites: Constituents, Compatibility, Perspectives and Applications presents a widespread all-inclusive review on fibre-reinforced composites ranging from the different types of processing techniques to chemical modification of the fibre surface to enhance the interfacial adhesion between the matrix and fibre and the structure-property relationship. It illustrates how high value composites can be produced by efficient and sustainable processing methods by selecting different constituents [fibres and resins]. Researchers in academia working in composites and accompanying areas [materials characterisation] and industrial manufacturers who need information on composite constituents and how they relate to each other for a certain application will find the book extremely useful when they need to make decisions about materials selection for their products.
Zero-Dimensional Carbon Nanomaterials: Material Design Methods, Properties and Applications covers advances in carbon dots, graphene quantum dots, carbon quantum dots, fullerenes and their applications. This book explores important aspects of preparing these materials for specific applications and includes an overview of the most relevant synthesis methods, with special emphasis on newer green methods and material synthesis from biomass sources. Thorough discussion of the materials key properties, including unique optical and electronic properties to enable them for a wide range of applications is included, along with applications in the fields of photovoltaic cells, catalysis, sensors, biomedical, nano devices and energy storage. This book is suitable for researchers and practitioners in materials science and engineering and may also be helpful for chemists and chemical engineers.
Materials for Potential EMI Shielding Applications: Processing, Properties and Current Trends extensively and comprehensively reviews materials for EMI shielding applications, ranging from the principles to possible applications and various types of shielding materials. The book provides a thorough introduction to electromagnetic interference, its effect on both the environment and other electronic items, various materials that are used for electromagnetic interference shielding applications, and its properties. It explains the mechanism behind EMI shielding, the methods by which EMI SE of a given material is estimated, and the different fabrication methods currently employed for fabricating EMI shielding materials. Final sections focus on the theoretical background of EMI shielding and shielding mechanisms. This theoretical background is extended to the physics of EMI shielding, wherein the physics behind mechanism of shielding is explained.
|
You may like...
|