Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.
""Density Waves in Solids" is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions--discussed using second quantized formalism--together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.
Millimeter and Submillimeter Wave Spectroscopy of Solids focuses on the experimental methods and recent experimental results which are currently employed in the millimeter wave spectral range. Time dome, Fourier transform, coherent source and resonant techniques are discussed by leading authorities in the field. The usefulness of the methods is discussed by reviewing experimental results on metals and semiconductors. Recent experiment covering modern topics such as correlation on metals, superconductors and confined quantum systems are also discussed. The volume is aimed at physicists, engineers and materials scientists interested in the dynamics of solid matter.
In this book the authors thoroughly discuss the optical properties of solids, with a focus on electron states and their response to electrodynamic fields. Their review of the propagation of electromagnetic fields and their interaction with condensed matter is followed by a discussion of the optical properties of metals, semiconductors, and superconductors. Theoretical concepts, measurement techniques and experimental results are covered in three interrelated sections. The volume is intended for use by graduate students and researchers in the fields of condensed matter physics, materials science, and optical engineering.
In this book the authors thoroughly discuss the optical properties of solids, with a focus on electron states and their response to electrodynamic fields. Their review of the propagation of electromagnetic fields and their interaction with condensed matter is followed by a discussion of the optical properties of metals, semiconductors, and superconductors. Theoretical concepts, measurement techniques and experimental results are covered in three interrelated sections. The volume is intended for use by graduate students and researchers in the fields of condensed matter physics, materials science, and optical engineering.
This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. ++++ The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification: ++++ Die Erbrechtliche Schuldenhaftung Bei Der Nacherbfolge Nach Dem Burgerlichen Gesetzbuche George Gruner Schellenberg, 1904 Distribution of decedents' estates
|
You may like...
Macroeconomics - South African Edition
Gregory Mankiw, Mark Taylor, …
Hardcover
Novel Nanocomposites - Optical…
Mirela Suchea, Emmanouel Koudoumas, …
Hardcover
R1,082
Discovery Miles 10 820
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
|