Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This textbook guides readers through their first steps into the challenging world of mimicking human vision with computational tools and techniques pertaining to the field of image processing and analysis. While today's theoretical and applied processing and analysis of images meet with challenging and complex problems, this primer is confined to a much simpler, albeit critical, collection of image-to-image transformations, including image normalisation, enhancement, and filtering.It serves as an introduction to beginners, a refresher for undergraduate and graduate students, as well as engineers and computer scientists confronted with a problem to solve in computer vision. The book covers basic image processing/computer vision pipeline techniques, which are widely used in today's computer vision, computer graphics, and image processing, giving the readers enough knowledge to successfully tackle a wide range of applied problems.
Stochastic Modeling for Medical Image Analysis provides a brief introduction to medical imaging, stochastic modeling, and model-guided image analysis. Today, image-guided computer-assisted diagnostics (CAD) faces two basic challenging problems. The first is the computationally feasible and accurate modeling of images from different modalities to obtain clinically useful information. The second is the accurate and fast inferring of meaningful and clinically valid CAD decisions and/or predictions on the basis of model-guided image analysis. To help address this, this book details original stochastic appearance and shape models with computationally feasible and efficient learning techniques for improving the performance of object detection, segmentation, alignment, and analysis in a number of important CAD applications. The book demonstrates accurate descriptions of visual appearances and shapes of the goal objects and their background to help solve a number of important and challenging CAD problems. The models focus on the first-order marginals of pixel/voxel-wise signals and second- or higher-order Markov-Gibbs random fields of these signals and/or labels of regions supporting the goal objects in the lattice. This valuable resource presents the latest state of the art in stochastic modeling for medical image analysis while incorporating fully tested experimental results throughout.
This textbook guides readers through their first steps into the challenging world of mimicking human vision with computational tools and techniques pertaining to the field of image processing and analysis. While today's theoretical and applied processing and analysis of images meet with challenging and complex problems, this primer is confined to a much simpler, albeit critical, collection of image-to-image transformations, including image normalisation, enhancement, and filtering.It serves as an introduction to beginners, a refresher for undergraduate and graduate students, as well as engineers and computer scientists confronted with a problem to solve in computer vision. The book covers basic image processing/computer vision pipeline techniques, which are widely used in today's computer vision, computer graphics, and image processing, giving the readers enough knowledge to successfully tackle a wide range of applied problems.
This volume constitutes the refereed proceedings of the Joint IAPR International Workshops on Structural and Syntactic Pattern Recognition (SSPR 2012) and Statistical Techniques in Pattern Recognition (SPR 2012), held in Hiroshima, Japan, in November 2012 as a satellite event of the 21st International Conference on Pattern Recognition, ICPR 2012. The 80 revised full papers presented together with 1 invited paper and the Pierre Devijver award lecture were carefully reviewed and selected from more than 120 initial submissions. The papers are organized in topical sections on structural, syntactical, and statistical pattern recognition, graph and tree methods, randomized methods and image analysis, kernel methods in structural and syntactical pattern recognition, applications of structural and syntactical pattern recognition, clustering, learning, kernel methods in statistical pattern recognition, kernel methods in statistical pattern recognition, as well as applications of structural, syntactical, and statistical methods.
This book constitutes the thoroughly refereed post-proceedings of
the 10th International Workshop on Theoretical Foundations of
Computer Vision, held at Dagstuhl Castle, Germany, in March
2000.
Stochastic Modeling for Medical Image Analysis provides a brief introduction to medical imaging, stochastic modeling, and model-guided image analysis. Today, image-guided computer-assisted diagnostics (CAD) faces two basic challenging problems. The first is the computationally feasible and accurate modeling of images from different modalities to obtain clinically useful information. The second is the accurate and fast inferring of meaningful and clinically valid CAD decisions and/or predictions on the basis of model-guided image analysis. To help address this, this book details original stochastic appearance and shape models with computationally feasible and efficient learning techniques for improving the performance of object detection, segmentation, alignment, and analysis in a number of important CAD applications. The book demonstrates accurate descriptions of visual appearances and shapes of the goal objects and their background to help solve a number of important and challenging CAD problems. The models focus on the first-order marginals of pixel/voxel-wise signals and second- or higher-order Markov-Gibbs random fields of these signals and/or labels of regions supporting the goal objects in the lattice. This valuable resource presents the latest state of the art in stochastic modeling for medical image analysis while incorporating fully tested experimental results throughout.
|
You may like...
|