Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This book arose from a conference on "Singularities and Computer Algebra" which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel's 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra.Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schoenemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists.The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.
From the reviews of the first edition: "It is certainly no exaggeration to say that A Singular Introduction to Commutative Algebra aims to lead a further stage in the computational revolution in commutative algebra . Among the great strengths and most distinctive features is a new, completely unified treatment of the global and local theories. making it one of the most flexible and most efficient systems of its type....another strength of Greuel and Pfister's book is its breadth of coverage of theoretical topics in the portions of commutative algebra closest to algebraic geometry, with algorithmic treatments of almost every topic....Greuel and Pfister have written a distinctive and highly useful book that should be in the library of every commutative algebraist and algebraic geometer, expert and novice alike." J.B. Little, MAA, March 2004 The second edition is substantially enlarged by a chapter on Groebner bases in non-commtative rings, a chapter on characteristic and triangular sets with applications to primary decomposition and polynomial solving and an appendix on polynomial factorization including factorization over algebraic field extensions and absolute factorization, in the uni- and multivariate case."
This book arose from a conference on "Singularities and Computer Algebra" which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel's 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra.Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schoenemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists.The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.
A First Course in Computational Algebraic Geometry is designed for young students with some background in algebra who wish to perform their first experiments in computational geometry. Originating from a course taught at the African Institute for Mathematical Sciences, the book gives a compact presentation of the basic theory, with particular emphasis on explicit computational examples using the freely available computer algebra system, Singular. Readers will quickly gain the confidence to begin performing their own experiments.
Auf der Grundlage einer Einfuhrung in die kommutative Algebra,
algebraische
This research monograph sets out to study the notion of a local moduli suite of algebraic objects like e.g. schemes, singularities or Lie algebras and provides a framework for this. The basic idea is to work with the action of the kernel of the Kodaira-Spencer map, on the base space of a versal family. The main results are the existence, in a general context, of a local moduli suite in the category of algebraic spaces, and the proof that, generically, this moduli suite is the quotient of a canonical filtration of the base space of the versal family by the action of the Kodaira-Spencer kernel. Applied to the special case of quasihomogenous hypersurfaces, these ideas provide the framework for the proof of the existence of a coarse moduli scheme for plane curve singularities with fixed semigroup and minimal Tjurina number . An example shows that for arbitrary the corresponding moduli space is not, in general, a scheme. The book addresses mathematicians working on problems of moduli, in algebraic or in complex analytic geometry. It assumes a working knowledge of deformation theory.
This substantially enlarged second edition aims to lead a further stage in the computational revolution in commutative algebra. This is the first handbook/tutorial to extensively deal with SINGULAR. Among the book's most distinctive features is a new, completely unified treatment of the global and local theories. Another feature of the book is its breadth of coverage of theoretical topics in the portions of commutative algebra closest to algebraic geometry, with algorithmic treatments of almost every topic.
Idealer Einstieg fur Studierende der Informatik in die Mathematik: * Jedes Kapitel beginnt mit konkreten, dem Leser vertrauten Begriffen oder Situationen. Davon ausgehend wird schrittweise bis hin zu den gebrauchlichen abstrakten Begriffen der modernen Mathematik abstrahiert. * Jedes Kapitel beschreibt viele interessante Situationen des Alltagslebens, in denen die zuvor eingefuhrten abstrakten Begriffe und die bewiesenen Ergebnisse zum Einsatz kommen. Dabei wird auf Anwendungen mit einem engen Bezug zur Informatik eingegangen wie: Routenplaner, Google-Suche, Kryptographie, Codierungstheorie, Datenkompressionen, Hashtabellen und Sudoku. Durch Loesungen aller UEbungsaufgaben auch sehr gut zum Selbststudium geeignet.
This volume surveys important topics in singularity theory, with a particular focus on computational aspects of the subject. The contributors to this volume include R. O. Buchweitz, Y. A. Drozd, W. Ebeling, H. A. Hamm, Le D. T., I. Luengo, F.-O. Schreyer, E. Shustin, J. H. M. Steenbrink, D. van Straten, B. Teissier and J. Wahl. Together they describe the development of various areas of singularity theory over many years, and a range of open questions are discussed. Research workers in singularity theory, computer algebra or related subjects will find that this book contains a wealth of valuable information.
|
You may like...
|