|
Showing 1 - 7 of
7 matches in All Departments
A new foundation of Topology, summarized under the name Convenient
Topology, is considered such that several deficiencies of
topological and uniform spaces are remedied. This does not mean
that these spaces are superfluous. It means exactly that a better
framework for handling problems of a topological nature is used. In
this setting semiuniform convergence spaces play an essential role.
They include not only convergence structures such as topological
structures and limit space structures, but also uniform convergence
structures such as uniform structures and uniform limit space
structures, and they are suitable for studying continuity, Cauchy
continuity and uniform continuity as well as convergence structures
in function spaces, e.g. simple convergence, continuous convergence
and uniform convergence. Various interesting results are presented
which cannot be obtained by using topological or uniform spaces in
the usual context. The text is self-contained with the exception of
the last chapter, where the intuitive concept of nearness is
incorporated in Convenient Topology (there exist already excellent
expositions on nearness spaces).
Approach your problems from the right end It isn't that they can't
see the solution. It is and begin with the answers. Then one day,
that they can't see the problem. perhaps you will find the final
question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad
in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's
The Chinese Maze Murders. Growing specialization and
diversification have brought a host of monographs and textbooks on
increasingly specialized topics. However, the "tree" of knowledge
of mathematics and related fields does not grow only by putting
forth new branches. It also happens, quite often in fact, that
branches which were thought to be completely disparate are suddenly
seen to be related. Further, the kind and level of sophistication
of mathematics applied in various sciences has changed drastically
in recent years: measure theory is used (non-trivially) in regional
and theoretical economics; algebraic geometry interacts with
physics; the Minkowsky lemma, coding theory and the structure of
water meet one another in packing and covering theory; quantum
fields, crystal defects and mathematical programming profit from
homotopy theory; Lie algebras are relevant to filtering; and
prediction and electrical engineering can use Stein spaces. And in
addition to this there are such new emerging subdisciplines as
"experimental mathematics," "CFD," "completely integrable systems,"
"chaos, synergetics and large-scale order," which are almost
impossible to fit into the existing classification schemes. They
draw upon widely different sections of mathematics.
A new foundation of Topology, summarized under the name Convenient
Topology, is considered such that several deficiencies of
topological and uniform spaces are remedied. This does not mean
that these spaces are superfluous. It means exactly that a better
framework for handling problems of a topological nature is used. In
this setting semiuniform convergence spaces play an essential role.
They include not only convergence structures such as topological
structures and limit space structures, but also uniform convergence
structures such as uniform structures and uniform limit space
structures, and they are suitable for studying continuity, Cauchy
continuity and uniform continuity as well as convergence structures
in function spaces, e.g. simple convergence, continuous convergence
and uniform convergence. Various interesting results are presented
which cannot be obtained by using topological or uniform spaces in
the usual context. The text is self-contained with the exception of
the last chapter, where the intuitive concept of nearness is
incorporated in Convenient Topology (there exist already excellent
expositions on nearness spaces).
Approach your problems from the right end It isn't that they can't
see the solution. It is and begin with the answers. Then one day,
that they can't see the problem. perhaps you will find the final
question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad
in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's
The Chinese Maze Murders. Growing specialization and
diversification have brought a host of monographs and textbooks on
increasingly specialized topics. However, the "tree" of knowledge
of mathematics and related fields does not grow only by putting
forth new branches. It also happens, quite often in fact, that
branches which were thought to be completely disparate are suddenly
seen to be related. Further, the kind and level of sophistication
of mathematics applied in various sciences has changed drastically
in recent years: measure theory is used (non-trivially) in regional
and theoretical economics; algebraic geometry interacts with
physics; the Minkowsky lemma, coding theory and the structure of
water meet one another in packing and covering theory; quantum
fields, crystal defects and mathematical programming profit from
homotopy theory; Lie algebras are relevant to filtering; and
prediction and electrical engineering can use Stein spaces. And in
addition to this there are such new emerging subdisciplines as
"experimental mathematics", "CFD", "completely integrable systems",
"chaos, synergetics and large-scale order", which are almost
impossible to fit into the existing classification schemes. They
draw upon widely different sections of mathematics.
Felix Hausdorff gehort zu den herausragenden Mathematikern der
ersten Halfte des 20. Jahrhunderts. Er hinterliess einen
ungewohnlich reichhaltigen Korpus wissenschaftlicher Manuskripe.
Sein Gesamtwerk soll nun in 9 Banden, jeweils mit detaillierten
Kommentaren, herausgegeben werden. Der vorliegende Band II enthalt
Hausdorffs wohl wichtigstes Werk, die "Grundzuge der Mengenlehre"
Dieses Buch gehort zu den Klassikern der mathematischen Literatur
und hat auf die Entwicklung der Mathematik im 20. Jahrhundert einen
bedeutenden Einfluss ausgeubt. Daher erschien es geboten,
ausfuhrliche Kommentare beizufugen. In diesen Kommentaren werden
vor allem die bedeutenden originellen Beitrage, die Hausdorff in
den "Grundzugen" zur Topologie, allgemeinen und deskriptiven
Mengenlehre geleistet hat, eingehend behandelt. Insbesondere wird
versucht, Hausdorffs Leistungen in die historische Entwicklung
einzuordnen und ihre jeweilige Wirkungsgeschichte zu skizzieren."
Band III der Hausdorff-Edition enthalt Hausdorffs Band
Mengenlehre," seine veroffentlichten Arbeiten zur deskriptiven
Mengenlehre und Topologie sowie zahlreiche einschlagige Studien aus
dem Nachlass. Sein Buch Mengenlehre" erlangte besonders dadurch
historische Bedeutung, als darin erstmals eine monographische
Darstellung des damals aktuellen Standes der deskriptiven
Mengenlehre gegeben wurde. Es ist hier von Spezialisten dieses
Gebietes sorgfaltig kommentiert worden. Auch die veroffentlichten
Arbeiten sind mit ausfuhrlichen Kommentaren versehen. Besonders
umfassend ist in diesem Band der Edition der Nachlass Hausdorffs
berucksichtigt. Hingewiesen sei insbesondere auf seinen zahlreichen
originellen Studien zu Themen der deskriptiven Mengenlehre und auf
seine damals sehr originelle Vorlesung uber algebraische Topologie
vom Sommersemester 1933."
Felix Hausdorff gehort zu den herausragenden Mathematikern der
ersten Halfte des 20. Jahrhunderts. Er hinterliess einen
ungewohnlich reichhaltigen Korpus wissenschaftlicher Manuskripe.
Sein Gesamtwerk soll nun in 9 Banden, jeweils mit detaillierten
Kommentaren, herausgegeben werden. Der vorliegende Band II enthalt
Hausdorffs wohl wichtigstes Werk, die "Grundzuge der Mengenlehre"
Dieses Buch gehort zu den Klassikern der mathematischen Literatur
und hat auf die Entwicklung der Mathematik im 20. Jahrhundert einen
bedeutenden Einfluss ausgeubt. Daher erschien es geboten,
ausfuhrliche Kommentare beizufugen. In diesen Kommentaren werden
vor allem die bedeutenden originellen Beitrage, die Hausdorff in
den "Grundzugen" zur Topologie, allgemeinen und deskriptiven
Mengenlehre geleistet hat, eingehend behandelt. Insbesondere wird
versucht, Hausdorffs Leistungen in die historische Entwicklung
einzuordnen und ihre jeweilige Wirkungsgeschichte zu skizzieren."
|
You may like...
Loot
Nadine Gordimer
Paperback
(2)
R398
R369
Discovery Miles 3 690
Loot
Nadine Gordimer
Paperback
(2)
R398
R369
Discovery Miles 3 690
|