![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This book describes algorithmic methods and hardware implementations that aim to help realize the promise of Compressed Sensing (CS), namely the ability to reconstruct high-dimensional signals from a properly chosen low-dimensional "portrait". The authors describe a design flow and some low-resource physical realizations of sensing systems based on CS. They highlight the pros and cons of several design choices from a pragmatic point of view, and show how a lightweight and mild but effective form of adaptation to the target signals can be the key to consistent resource saving. The basic principle of the devised design flow can be applied to almost any CS-based sensing system, including analog-to-information converters, and has been proven to fit an extremely diverse set of applications. Many practical aspects required to put a CS-based sensing system to work are also addressed, including saturation, quantization, and leakage phenomena.
The book deals with engineering aspects of the two emerging and intertwined fields of synthetic and systems biology. Both fields hold promise to revolutionize the way molecular biology research is done, the way today 's drug discovery works and the way bio-engineering is done. Both fields stress the importance of building and characterizing small bio-molecular networks in order to synthesize incrementally and understand large complex networks inside living cells. Reminiscent of computer-aided design (CAD) of electronic circuits, abstraction is believed to be the key concept to achieve this goal. It allows hiding the overwhelming complexity of cellular processes by encapsulating network parts into abstract modules. This book provides a unique perspective on how concepts and methods from CAD of electronic circuits can be leveraged to overcome complexity barrier perceived in synthetic and systems biology.
At the code level, discrete-time chaotic systems can be used to generate spreading codes for DS-SS systems. At the signal level, continuous-time chaotic systems can be used to generate wideband carriers for digital modulation schemes.
The idea for this book originated from a Special Session on Circuits and Systems for Future Generations of Wireless Communications that was presented at the 2005 InternationalSymposiumon Circuits and Systems, which was then followed by two Special Issues bearing the same title that appeared in the March and April 2008 issues of the IEEE Transactions on Circuits and Systems - Part II: Express Briefs. Out of a large number of great contributions, we have selected those tting best the book format based on their quality. We would like to thank all the authors, the reviewers of the Transactions on Circuits and Systems - Part II, and the reviewers of the nal book material for their efforts in creating this manuscript. We also thank the Springer Editorial Staff for their support in putting together all the good work. We hope that this book will provide you, the reader, with new insights into Circuits and Systems for Future Generations of Wireless Communications.
The idea for this book originated from a Special Session on Circuits and Systems for Future Generations of Wireless Communications that was presented at the 2005 InternationalSymposiumon Circuits and Systems, which was then followed by two Special Issues bearing the same title that appeared in the March and April 2008 issues of the IEEE Transactions on Circuits and Systems - Part II: Express Briefs. Out of a large number of great contributions, we have selected those tting best the book format based on their quality. We would like to thank all the authors, the reviewers of the Transactions on Circuits and Systems - Part II, and the reviewers of the nal book material for their efforts in creating this manuscript. We also thank the Springer Editorial Staff for their support in putting together all the good work. We hope that this book will provide you, the reader, with new insights into Circuits and Systems for Future Generations of Wireless Communications.
The book deals with engineering aspects of the two emerging and intertwined fields of synthetic and systems biology. Both fields hold promise to revolutionize the way molecular biology research is done, the way today's drug discovery works and the way bio-engineering is done. Both fields stress the importance of building and characterizing small bio-molecular networks in order to synthesize incrementally and understand large complex networks inside living cells. Reminiscent of computer-aided design (CAD) of electronic circuits, abstraction is believed to be the key concept to achieve this goal. It allows hiding the overwhelming complexity of cellular processes by encapsulating network parts into abstract modules. This book provides a unique perspective on how concepts and methods from CAD of electronic circuits can be leveraged to overcome complexity barrier perceived in synthetic and systems biology.
|
![]() ![]() You may like...
Rogue One: A Star Wars Story - Blu-Ray…
Felicity Jones, Diego Luna, …
Blu-ray disc
R434
Discovery Miles 4 340
|