Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The proposed book presents recent breakthroughs for the control of distributed parameter systems and follows on from a workshop devoted to this topic. It introduces new and unified visions of the challenging control problems raised by distributed parameter systems. The book collects contributions written by prominent international experts in the control community, addressing a wide variety of topics. It spans the full range from theoretical research to practical implementation and follows three traverse axes: emerging ideas in terms of control strategies (energy shaping, prediction-based control, numerical control, input saturation), theoretical concepts for interconnected systems (with potential non-linear actuation dynamics), advanced applications (cable-operated elevators, traffic networks), and numerical aspects. Cutting-edge experts in the field contributed in this volume, making it a valuable reference source for control practitioners, graduate students, and scientists researching practical and theoretical solutions to the challenging problems raised by distributed parameter systems.
Time-delays are fundamental to understand phenomena in control applications as networked systems, traffic management, control of vibrations, and supply chains. The need for a performance and reliability on these systems has to overcome challenges related to the constraints in the controlled systems. These constraints can be physical, such as input magnitude saturation on actuators, or technological, such as the limited bandwidth in a networked system or the fixed structure in a control architecture, where only a few parameters can be set. This volume provides a wide-ranging collection of methods for the analysis and design of control laws for delay systems with constraints. These methods cover fundamental analytical aspects as, for instance, the stability analysis of Positive Delay systems or the achievable performance of PID controls for delay systems. The book gives valuable material for researchers and graduate students in Automatic Control.
This book contains advances on the theory and applications of time-delay systems with particular focus on interconnected systems. The methods for stability analysis and control design are based on time-domain and frequency-domain approaches, for continuous-time and sampled-data systems, linear and nonlinear systems. This volume is a valuable source of reference for control practitioners, graduate students, and scientists researching practical as well as theoretical solutions to a variety of control problems inevitably influenced by the presence of time delays. The contents are organized in three parts: Interconnected Systems analysis, Modeling and and Analysis for Delay systems, and Stabilization and Control Strategies for Delay Systems. This volume presents a selection of 19 contributions presented in the 4th DelSys Workshop which took place in Gif-sur-Yvette, France November 25-27, 2015.
Time-delays are fundamental to understand phenomena in control applications as networked systems, traffic management, control of vibrations, and supply chains.  The need for a performance and reliability on these systems has to overcome challenges related to the constraints in the controlled systems. These constraints can be physical, such as input magnitude saturation on actuators, or technological, such as the limited bandwidth in a networked system or the fixed structure in a control architecture, where only a few parameters can be set. This volume provides a wide-ranging collection of methods for the analysis and design of control laws for delay systems with constraints. These methods cover fundamental analytical aspects as, for instance, the stability analysis of Positive Delay systems or the achievable performance of PID controls for delay systems.  The book gives valuable material for researchers and graduate students in Automatic Control. Â
The proposed book presents recent breakthroughs for the control of distributed parameter systems and follows on from a workshop devoted to this topic. It introduces new and unified visions of the challenging control problems raised by distributed parameter systems. The book collects contributions written by prominent international experts in the control community, addressing a wide variety of topics. It spans the full range from theoretical research to practical implementation and follows three traverse axes: emerging ideas in terms of control strategies (energy shaping, prediction-based control, numerical control, input saturation), theoretical concepts for interconnected systems (with potential non-linear actuation dynamics), advanced applications (cable-operated elevators, traffic networks), and numerical aspects. Cutting-edge experts in the field contributed in this volume, making it a valuable reference source for control practitioners, graduate students, and scientists researching practical and theoretical solutions to the challenging problems raised by distributed parameter systems.
|
You may like...
|