Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book offers a self-contained introduction to the theory of
electroweak interactions based on the semi-classical approach to
relativistic quantum field theory, with thorough discussion of key
aspects of the field. The basic tools for the calculation of cross
sections and decay rates in the context of relativistic quantum
field theory are reviewed in a short, but complete and rigorous,
presentation. Special attention is focused on relativistic
scattering theory and on calculation of amplitude in the
semi-classical approximation. The central part of the book is
devoted to an illustration of the unified field theory of
electromagnetic and weak interactions as a quantum field theory
with spontaneously broken gauge invariance; particular emphasis is
placed on experimental confirmations of the theory. The closing
chapters address the most recent developments in electroweak
phenomenology and provide an introduction to the theory and
phenomenology of neutrino oscillations.In this 2nd edition the
discussion of relativistic scattering processes in the
semi-classical approximation has been revised and as a result
intermediate results are now explicitly proven. Furthermore, the
recent discovery of the Higgs boson is now taken into account
throughout the book. In particular, the Higgs decay channel into a
pair of photons, which has played a crucial role in the discovery,
is discussed.As in the first edition, the accent is still on the
semi-classical approximation. However, in view of the necessity of
a discussion of H , the authors give several indications about
corrections to the semiclassical approximation. Violation of
unitarity is discussed in more detail, including the dispersion
relations as a tool for computing loop corrections; the
above-mentioned Higgs decay channel is illustrated by means of a
full one-loop calculation; and finally, loop effects on the
production of unstable particles (such as the Z0 boson) are now
discussed. Finally, the neutrino mass and oscillation analysis is
updated taking into account the major achievements of the last
years.
'What makes this collection unusual and refreshing is that it is not the more common aEURO~FestschriftaEURO (TM) written by specialists for specialists, but a broad set of topical summaries and analyses addressed to a wide readership of particle physicists. Inevitably, some of the sections are more advanced in their treatment than others, but most of the material will be accessible and helpful to researchers at all levels, and in particular to those working on experiments at CERN, where Altarelli spent many years in the theory group. It is hard to do justice to the varied contents of this excellent collection ... I can only recommend that anyone involved in particle research should turn to the web for a full description of the richness of material that is included here ... There is something here for everyone, and much for most. IaEURO (TM)m sure Altarelli would have been pleased with that! The Editors are to be complimented for their initiative in making this unique volume possible.'Contemporary PhysicsGuido Altarelli was a leading figure in 20th century particle physics. His scientific contributions and leadership played a key role in the development of the Standard Model of fundamental interactions, as well as the current search for new physics beyond it, both at and beyond CERN. This book is a collection of original contributions, at the cutting edge of scientific research, by some of the leading theoretical and experimental high-energy physicists currently in the field. These were inspired by Guido's ideas, whether directly or indirectly. This book is ideal for researchers looking to keep up with the latest developments in high-energy physics.
This book offers a self-contained introduction to the theory of electroweak interactions based on the semi-classical approach to relativistic quantum field theory, with thorough discussion of key aspects of the field. The basic tools for the calculation of cross sections and decay rates in the context of relativistic quantum field theory are reviewed in a short, but complete and rigorous, presentation. Special attention is focused on relativistic scattering theory and on calculation of amplitude in the semi-classical approximation. The central part of the book is devoted to an illustration of the unified field theory of electromagnetic and weak interactions as a quantum field theory with spontaneously broken gauge invariance; particular emphasis is placed on experimental confirmations of the theory. The closing chapters address the most recent developments in electroweak phenomenology and provide an introduction to the theory and phenomenology of neutrino oscillations. In this 2nd edition the discussion of relativistic scattering processes in the semi-classical approximation has been revised and as a result intermediate results are now explicitly proven. Furthermore, the recent discovery of the Higgs boson is now taken into account throughout the book. In particular, the Higgs decay channel into a pair of photons, which has played a crucial role in the discovery, is discussed. As in the first edition, the accent is still on the semi-classical approximation. However, in view of the necessity of a discussion of H !, the authors give several indications about corrections to the semiclassical approximation. Violation of unitarity is discussed in more detail, including the dispersion relations as a tool for computing loop corrections; the above-mentioned Higgs decay channel is illustrated by means of a full one-loop calculation; and finally, loop effects on the production of unstable particles (such as the Z0 boson) are now discussed. Finally, the neutrino mass and oscillation analysis is updated taking into account the major achievements of the last years.
|
You may like...
|