Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The study of what can be computed by a team of autonomous mobile robots, originally started in robotics and AI, has become increasingly popular in theoretical computer science (especially in distributed computing), where it is now an integral part of the investigations on computability by mobile entities. The robots are identical computational entities located and able to move in a spatial universe; they operate without explicit communication and are usually unable to remember the past; they are extremely simple, with limited resources, and individually quite weak. However, collectively the robots are capable of performing complex tasks, and form a system with desirable fault-tolerant and self-stabilizing properties. The research has been concerned with the computational aspects of such systems. In particular, the focus has been on the minimal capabilities that the robots should have in order to solve a problem. This book focuses on the recent algorithmic results in the field of distributed computing by oblivious mobile robots (unable to remember the past). After introducing the computational model with its nuances, we focus on basic coordination problems: pattern formation, gathering, scattering, leader election, as well as on dynamic tasks such as flocking. For each of these problems, we provide a snapshot of the state of the art, reviewing the existing algorithmic results. In doing so, we outline solution techniques, and we analyze the impact of the different assumptions on the robots' computability power. Table of Contents: Introduction / Computational Models / Gathering and Convergence / Pattern Formation / Scatterings and Coverings / Flocking / Other Directions
This book constitutes the refereed proceedings of the 14th International Colloquium on Structural Information and Communication Complexity, SIROCCO 2007, held in Castiglioncello, Italy in June 2007. The 23 revised full papers presented together with 4 invited talks were carefully reviewed and selected from 66 submissions. The papers address issues such as distributed computing, high-speed networks, interconnection networks, mobile computing, optical computing, parallel computing, sensor networks, wireless networks, and autonomous robots. The papers are organized in topical sections on graph exploration, fault tolerance, distributed algorithms and data structures, location problems, wireless networks, fault tolerance, as well as parallel computing and selfish routing.
This book constitutes the refereed proceedings of the 4th International Conference on Fun with Algorithms, FUN 2007, held in Castiglioncello, Italy in June 2007. It details the use, design, and analysis of algorithms and data structures, focusing on results that provide amusing, witty, but nonetheless original and scientifically profound, contributions to the area.
This book constitutes the refereed post-proceedings of the 9th International Conference on Principles of Distributed Systems, OPODIS 2005, held in Pisa, Italy in December 2005. The volume presents 30 revised full papers and abstracts of 2 invited talks. The papers are organized in topical sections on nonblocking synchronization, fault-tolerant broadcast and consensus, self-stabilizing systems, peer-to-peer systems and collaborative environments, sensor networks and mobile computing, security and verification, real-time systems, and peer-to-peer systems.
Distributed Computing by Mobile Entities is concerned with the study of the computational and complexity issues arising in systems of decentralized computational entities operating in a spatial universe Encompassing and modeling a large variety of application environments and systems, from robotic swarms to networks of mobile sensors, from software mobile agents in communication networks to crawlers and viruses on the web, the theoretical research in this area intersects distributed computing with the fields of computational geometry (especially for continuous spaces), control theory, graph theory and combinatorics (especially for discrete spaces). The research focus is on determining what tasks can be performed by the entities, under what conditions, and at what cost. In particular, the central question is to determine what minimal hypotheses allow a given problem to be solved. This book is based on the lectures and tutorial presented at the research meeting on "Moving and Computing" (mac) held at La Maddalena Island in June 2017. Greatly expanded, revised and updated, each of the lectures forms an individual Chapter. Together, they provide a map of the current knowledge about the boundaries of distributed computing by mobile entities.
|
You may like...
|