Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Extensively revised and thoroughly updated, this popular text de-emphasizes high level mathematics in favor of effective, accurate modeling. Real-world examples amplify the theory and show how to use derived equations to model physical problems. Exercises that parallel the examples build readers' confidence and prepare them to confront the more complex situations they encounter as professionals.
With the resurgence of nuclear power around the world, and the increasingly important role of hydrogen as a clean energy carrier, the utilization of nuclear energy for large-scale hydrogen production will have a key role in a sustainable energy future. Co-generation of both electricity and hydrogen from nuclear plants will become increasingly attractive. It enables load leveling together with renewable energy and storage of electricity in the form of hydrogen, when electricity prices and demand are lowest at off-peak hours of nuclear plants, such as overnight. "Hydrogen Production from Nuclear Energy "provides an overview of the latest developments and methods of nuclear based hydrogen production, including electrolysis and thermochemical cycles. Particular focus is given to thermochemical water splitting by the copper-chlorine and sulphur-based cycles. Cycle configurations, equipment design, modeling and implementation issues are presented and discussed. The book provides the reader with an overview of the key enabling technologies towards the design and industrialization of hydrogen plants that are co-located and linked with nuclear plants in the future. The book includes illustrations of technology developments, tables that summarize key features and results, overviews of recent advances and new methods of nuclear hydrogen production. The latest results from leading authorities in the fields will be presented, including efficiencies, costs, equipment design, and modeling.
Covers the analysis and design of advanced thermal engineering systems. Discusses emerging new solution methods, which can be applied to thermal engineering systems, such as machine learning, quasi-stationary, and perturbation methods. Features a different chapter is devoted to each multiphase system, rather than mixing in special multiphase topics. Provides an updated perspective on new emerging fields of heat transfer in engineering education where a single source of advanced solution methods is presented for a wide range of applications and modes of heat transfer. Explains multiphase modes of solidification, melting, boiling, condensation, droplet flows.
Extensively revised and thoroughly updated, this popular text de-emphasizes high level mathematics in favor of effective, accurate modeling. Real-world examples amplify the theory and show how to use derived equations to model physical problems. Exercises that parallel the examples build readers' confidence and prepare them to confront the more complex situations they encounter as professionals.
With the resurgence of nuclear power around the world, and the increasingly important role of hydrogen as a clean energy carrier, the utilization of nuclear energy for large-scale hydrogen production will have a key role in a sustainable energy future. Co-generation of both electricity and hydrogen from nuclear plants will become increasingly attractive. It enables load leveling together with renewable energy and storage of electricity in the form of hydrogen, when electricity prices and demand are lowest at off-peak hours of nuclear plants, such as overnight. Hydrogen Production from Nuclear Energy provides an overview of the latest developments and methods of nuclear based hydrogen production, including electrolysis and thermochemical cycles. Particular focus is given to thermochemical water splitting by the copper-chlorine and sulphur-based cycles. Cycle configurations, equipment design, modeling and implementation issues are presented and discussed. The book provides the reader with an overview of the key enabling technologies towards the design and industrialization of hydrogen plants that are co-located and linked with nuclear plants in the future. The book includes illustrations of technology developments, tables that summarize key features and results, overviews of recent advances and new methods of nuclear hydrogen production. The latest results from leading authorities in the fields will be presented, including efficiencies, costs, equipment design, and modeling.
From engineering fluid mechanics to power systems, information coding theory and other fields, entropy is key to maximizing performance in engineering systems. It serves a vital role in achieving the upper limits of efficiency of industrial processes and quality of manufactured products. Entropy based design (EBD) can shed new light on various flow processes, ranging from optimized flow configurations in an aircraft engine to highly ordered crystal structures in a turbine blade. Entropy Based Design of Fluid Engineering Systems provides an overview of EBD as an emerging technology with applications to aerospace, microfluidics, heat transfer, and other disciplines. The text extends past analytical methods of Entropy Generation Minimization to numerical simulations involving more complex configurations and experimental measurement techniques. The book begins with an extensive development of basic concepts, including the mathematical properties of entropy and exergy, as well as statistical and numerical formulations of the second law. It then goes on to describe topics related to incompressible flows and the Second Law in microfluidic systems. The authors develop computational and experimental methods for identifying problem regions within a system through the local rates of entropy production. With these techniques, designers can use EBD to focus on particular regions where design modifications can be made to improve system performance. Numerous case studies illustrate the concepts in each chapter, and cover an array of applications including supersonic flows, condensation and turbulence. A one-of-a-kind reference, Entropy Based Design of Fluid Engineering Systems outlines new advancesshowing how local irreversibilities can be detected in complex configurations so that engineering devices can be re-designed locally to improve overall performance.
|
You may like...
The White Queen - The Complete Series
Rebecca Ferguson, Amanda Hale, …
Blu-ray disc
(4)
|