Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Understanding sequence data, and the ability to utilize this hidden knowledge, creates a significant impact on many aspects of our society. Examples of sequence data include DNA, protein, customer purchase history, web surfing history, and more. Sequence Data Mining provides balanced coverage of the existing results on sequence data mining, as well as pattern types and associated pattern mining methods. While there are several books on data mining and sequence data analysis, currently there are no books that balance both of these topics. This professional volume fills in the gap, allowing readers to access state-of-the-art results in one place. Sequence Data Mining is designed for professionals working in bioinformatics, genomics, web services, and financial data analysis. This book is also suitable for advanced-level students in computer science and bioengineering. Forward by Professor Jiawei Han, University of Illinois at Urbana-Champaign.
Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.
A Fruitful Field for Researching Data Mining Methodology and for
Solving Real-Life Problems Learn from Real Case Studies of Contrast Mining
Applications
Understanding sequence data, and the ability to utilize this hidden knowledge, will create a significant impact on many aspects of our society. Examples of sequence data include DNA, protein, customer purchase history, web surfing history, and more. This book provides thorough coverage of the existing results on sequence data mining as well as pattern types and associated pattern mining methods. It offers balanced coverage on data mining and sequence data analysis, allowing readers to access the state-of-the-art results in one place.
This book constitutes the refereed proceedings of the joint 9th Asia-Pacific Web Conference, APWeb 2007, and the 8th International Conference on Web-Age Information Management, WAIM 2007, held in Huang Shan, China in June 2007. The 47 revised full papers and 36 revised short papers presented
together with 4 invited papers and the abstracts of 4 keynote
papers were carefully reviewed and selected from a total of 554
submissions. The papers are organized in topical sections on data
mining and knowledge discovery, information retrieval, P2P systems,
sensor networks, spatial and temporal databases, Web mining, XML
and semi-structured data, sensor networks and grids, query
processing and optimization, data streams, data integration and
collaborative systems, data mining and e-learning, data mining,
privacy and security, as well as data mining and data
streams.
This book constitutes the refereed proceedings of the 4th International Conference on Web-Age Information Management, WAIM 2003, held in Chengdu, China in August 2003. The 30 revised full papers and 16 revised short papers presented together with 2 invited contributions were carefully reviewed and selected from 258 submissions. The papers are organized in topical sections on Web; XML; text management; data mining; bioinformatics; peer-to-peer systems; service networks; time series, similarity, and ontologies; information filtering; queries and optimization; multimedia and views; and systems demonstrations.
Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.
This book presents pattern-based problem-solving methods for a variety of machine learning and data analysis problems. The methods are all based on techniques that exploit the power of group differences. They make use of group differences represented using emerging patterns (aka contrast patterns), which are patterns that match significantly different numbers of instances in different data groups. A large number of applications outside of the computing discipline are also included. Emerging patterns (EPs) are useful in many ways. EPs can be used as features, as simple classifiers, as subpopulation signatures/characterizations, and as triggering conditions for alerts. EPs can be used in gene ranking for complex diseases since they capture multi-factor interactions. The length of EPs can be used to detect anomalies, outliers, and novelties. Emerging/contrast pattern based methods for clustering analysis and outlier detection do not need distance metrics, avoiding pitfalls of the latter in exploratory analysis of high dimensional data. EP-based classifiers can achieve good accuracy even when the training datasets are tiny, making them useful for exploratory compound selection in drug design. EPs can serve as opportunities in opportunity-focused boosting and are useful for constructing powerful conditional ensembles. EP-based methods often produce interpretable models and results. In general, EPs are useful for classification, clustering, outlier detection, gene ranking for complex diseases, prediction model analysis and improvement, and so on. EPs are useful for many tasks because they represent group differences, which have extraordinary power. Moreover, EPs represent multi-factor interactions, whose effective handling is of vital importance and is a major challenge in many disciplines. Based on the results presented in this book, one can clearly say that patterns are useful, especially when they are linked to issues of interest. We believe that many effective ways to exploit group differences' power still remain to be discovered. Hopefully this book will inspire readers to discover such new ways, besides showing them existing ways, to solve various challenging problems.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|