![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Wave evolution on a falling film is a classical hydrodynamic instability whose rich wave dynamics have been carefully recorded in the last fifty years. Such waves are known to profoundly affect the mass and heat transfer of multi-phase industrial units.
The active field of multi-phase flow has undergone fundamental changes in the last decade. Many salient complex interfacial dynamics of such flows are now understood at a basic level with precise mathematical and quantitative characterization. This is quite a departure from the traditional empirical approach. At an IUTAM Symposium at Notre Dame, in 1999, some of the leading researchers in the field gathered to review the progress thus far and to contemplate future directions. Their reports are summarized in this Proceedings. Topics covered include solitary wave dynamics on viscous film flows, sheet formation and drop entrainment in stratified flow, wetting and dewetting dynamics, self-similar drop formation dynamics, waves in bubbly and suspension flow, and bubble dynamics. It is a unique and essential reference for applied mathematicians, physicists, research engineers, and graduate students to keep abreast of the latest theoretical and numerical developments that promise to transform multi-phase flow research.
The active field of multi-phase flow has undergone fundamental changes in the last decade. Many salient complex interfacial dynamics of such flows are now understood at a basic level with precise mathematical and quantitative characterization. This is quite a departure from the traditional empirical approach. At an IUTAM Symposium at Notre Dame, in 1999, some of the leading researchers in the field gathered to review the progress thus far and to contemplate future directions. Their reports are summarized in this Proceedings. Topics covered include solitary wave dynamics on viscous film flows, sheet formation and drop entrainment in stratified flow, wetting and dewetting dynamics, self-similar drop formation dynamics, waves in bubbly and suspension flow, and bubble dynamics. It is a unique and essential reference for applied mathematicians, physicists, research engineers, and graduate students to keep abreast of the latest theoretical and numerical developments that promise to transform multi-phase flow research.
|
![]() ![]() You may like...
Sustainability of Concrete
Pierre-Claude Aitcin, Sidney Mindess
Paperback
R3,335
Discovery Miles 33 350
The Routledge Companion to Artificial…
Imdat As, Prithwish Basu
Hardcover
R6,753
Discovery Miles 67 530
|