0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Hardcover, 2001 ed.): Hartmut Yersin Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Hardcover, 2001 ed.)
Hartmut Yersin; Contributions by K. L. Bray, M. Glasbeek, H. Kunkely, a. Vogler
R8,180 Discovery Miles 81 800 Ships in 10 - 15 working days

For a long time, the properties of transition metal and rare earth compounds have fascinated chemists and physicists from a scientific view-point, and more recently also their enormous potential as new materials has been explored. Applications in different fields have already been realized or are under c- rent investigation, for example, new laser materials, IR to visible upconversion systems, compounds for photolithographic processes, systems involving pho- redox processes for solar energy conversion, new photovoltaic devices, chemical sensors, biosensors, electroluminescent devices (OLEDs) for flat panel display systems, supramolecular devices with wide-range definable photophysical properties, materials for energy harvesting, optical information and storage systems, etc. Metal complexes are also highly important in biology and me- cine. Most of the applications mentioned are directly related to the properties of the electronic ground state and the lower-lying excited states. Metal complexes with organic ligands or organometallic compounds exhibit outstanding features as compared to purely organic molecules. For instance, metal compounds can often be prepared and applied in different oxidation states. Furthermore, various types of low-lying electronic excitations can be induced by a suitable choice of ligands, for example, such as metal-centered transitions (MC, e. g. d-d* tran- tion), ligand-centered (LC, e. g. n-n*), metal-to-ligand-charge transfer (MLCT, e. g. d-7r*), intra-ligand-charge-transfer (ILCT) transitions, etc. In particular, the orbitals involved in the resulting lowest excited states determine the photoph- ical and photochemical properties and thus the specific use of the compoun

Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Paperback, Softcover reprint of the... Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Paperback, Softcover reprint of the original 1st ed. 2001)
Hartmut Yersin; Contributions by K. L. Bray, M. Glasbeek, H. Kunkely, a. Vogler
R8,039 Discovery Miles 80 390 Ships in 10 - 15 working days

For a long time, the properties of transition metal and rare earth compounds have fascinated chemists and physicists from a scientific view-point, and more recently also their enormous potential as new materials has been explored. Applications in different fields have already been realized or are under c- rent investigation, for example, new laser materials, IR to visible upconversion systems, compounds for photolithographic processes, systems involving pho- redox processes for solar energy conversion, new photovoltaic devices, chemical sensors, biosensors, electroluminescent devices (OLEDs) for flat panel display systems, supramolecular devices with wide-range definable photophysical properties, materials for energy harvesting, optical information and storage systems, etc. Metal complexes are also highly important in biology and me- cine. Most of the applications mentioned are directly related to the properties of the electronic ground state and the lower-lying excited states. Metal complexes with organic ligands or organometallic compounds exhibit outstanding features as compared to purely organic molecules. For instance, metal compounds can often be prepared and applied in different oxidation states. Furthermore, various types of low-lying electronic excitations can be induced by a suitable choice of ligands, for example, such as metal-centered transitions (MC, e. g. d-d* tran- tion), ligand-centered (LC, e. g. n-n*), metal-to-ligand-charge transfer (MLCT, e. g. d-7r*), intra-ligand-charge-transfer (ILCT) transitions, etc. In particular, the orbitals involved in the resulting lowest excited states determine the photoph- ical and photochemical properties and thus the specific use of the compoun

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
To The Wolves - How Traitor Cops Crafted…
Caryn Dolley Paperback  (2)
R282 Discovery Miles 2 820
JBL T110 In-Ear Headphones (White)
R229 R205 Discovery Miles 2 050
Loot
Nadine Gordimer Paperback  (2)
R383 R318 Discovery Miles 3 180
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Comedy 4-Film Collection - Knocked Up…
Seth Rogen, Katherine Heigl, … DVD R66 Discovery Miles 660
Loot
Nadine Gordimer Paperback  (2)
R383 R318 Discovery Miles 3 180
Loot
Nadine Gordimer Paperback  (2)
R383 R318 Discovery Miles 3 180
Tenet
John David Washington, Robert Pattinson, … DVD  (1)
R51 Discovery Miles 510
Bantex @School 13cm Kids Blunt Nose…
R16 Discovery Miles 160
Bantex @School Painting Brushes…
R39 Discovery Miles 390

 

Partners