![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Wir unterhielten uns einmal dariiber, daB man sich in einer fremden Sprache nur unfrei ausdriicken kann und im Zweifelsfall lieber das sagt, was man richtig und einwandfrei zu sagen hofft, als das, was man eigentlich sagen will. Molnar nickte bestatigend: "Es ist sehr traurig," resiimierte er. "Ich habe oft mitten im Satz meine Weltanschauung andem miissen . . . " Friedrich Torberg, Die Tante Jolesch The last two decades have witnessed great progress in the theory of translation planes. Being interested in, and having worked a little on this subject, I felt the need to clarify for myself what had been happening in this area of mathematics. Thus I lectured about it for several semesters and, at the same time, I wrote what is now this book. It is my very personal view of the story, which means that I selected mainly those topics I had touched upon in my own investigations. Thus finite translation planes are the main the of the book. Infinite translation planes, however, are not completely disregarded. As all theory aims at the mastering of the examples, these play a central role in this book. I believe that this fact will be welcomed by many people. However, it is not a beginner's book of geometry. It presupposes consider able knowledge of projective planes and algebra, especially group theory. The books by Gorenstein, Hughes and Piper, Huppert, Passman, and Pickert mentioned in the bibliography will help to fill any gaps the reader may have."
Die vorlie nden Blatter stellen bis auf r Abweich n den Inhalt einer drei- semestri n Anfan rvorlesung liber lineare AI bra dar, die ich vorn Winter 1970/71 bis zum Winter 1971/72 in Kaiserslautern hal ten habe. J'lEin Hauptanlie n bei dieser Vorlesung war, den etwas trockenen Stoff der linearen Algebra durch viele Beispiele und interessante Anwendun n reizvoller zu stalten und durch die Beispiele auch dern Man l ein wenig abzuhelfen, dern man immer wieder auch bei der ei nen Arbeit begegnet, daB es narnlich leichter fallt, einen Satz zu beweisen als ein Gegenbeispiel fUr eine Verrrn. ttung zu finden. Die meisten Beispiele dieses Buches sind Beispiele fUr Ringe und KBrper: Der Ring der ganzen Zahlen und seine homomorphen Bilder werden untersucht, die ganzen Hensel'schen p-adischen Zahlen werden als Endomorphismenri der PrUfergruppen konstruiert, die ihrerseits interessante Beispiele von Gruppen liefern, die, wie man weiB, in der 'Iheo- rie der abelschen Gruppen eine greBe Rolle spielen; die Hensel'schen p-adischen Zahlen erscheinen als Quotientenkorper dieser Ringe. Ferner werden aIle Galoisfelder konstru- iert und zeigt, daB dies alle endlichen Korper sind. Die Endomorphismenrin von Vektorraumen liefem eine weitere Klasse von interessanten Beispielen. Die Struktur ihrer Rechts- und Linksidealverbande wird eingehend untersucht. SchlieBlich wird zu jeder Charakteristik ein Quaternionenschiefkorper konstruiert und zur Charakteristik Null sogar abzablbar viele, paarweise nicht isornorphe. Die ganzen Gauf. >' schen Zahlen sind ein Beispiel fUr einen euklidischen-Ring und mit ihrer Hilfe und der Theorie der euklidischen Rin erhalt man einen Beweis fUr den Fermat'schen zwei-Quadrate-Satz.
Meine Zahlentheorievorlesung des vergangenen Wintersemesters, deren Niederschrift ich hiermit dem mathematischen Publikum unter- breite, hatte zwei Ziele. Das erste war, die Rechenfertigkeit meiner Hoerer zu verbessern. Dabei meine ich mit Rechenfertigkeit nicht etwa Rechenschnelligkeit, die im Rechenunterricht der Schule, wie ich. wiederum durch meine Kinder weiss, allzusehr in den Vordergrund geruckt wird. Rechenfertigkeit sollte zu allererst Rechensicherheit mit sich bringen, denn Schnelligkeit bedeutet gar nichts, wenn das Ergeb- nis falsch ist. Man sollte sich also Zeit lassen beim Rechnen. Man sollte sich Rechenaufgaben erst einmal ansehen, bevor man anfangt zu rechnen. Denn Zahlen sind Individuen, und ein geschickter Rechner wird ihre individuellen Eigenschaften bei der Rechnung nutzen. Re- chenfertigkeit heisst also auch, dass man Rechenvorteile erkennt und nutzt. Das fangt schon damit an, dass man den Malpunkt zwischen zwei Zahlen nicht als zwingenden Befehl auffasst, die Multiplikation auch wirklich auszufuhren. (Wer glaubt, so etwas brauche man nicht zu erwahnen, der beobachte einmal, wie viele uberflussige Rechnungen Kinder machen, wenn sie Bruche addieren, multiplizieren oder der Groesse nach vergleichen. ) Solcherlei predige ich immer wieder meinen Kindern, und solcherlei wollte ich auch den Hoerern meiner Vorlesung nahebringen. Hierzu gehoert naturlich auch zu zeigen, wie man Satze der Zahlentheorie benutzen kann, um zu numerischen Resultaten zu kommen. Dass dies moeglich ist, ist schliesslich nicht verwunderlich, entstand doch ein grosser Teil der Zahlentheorie aus den Bedurfnissen der Rechenpraxis; man denke etwa an Euler, der z. B.
|
![]() ![]() You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|