0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (6)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

Reviews of Physiology, Biochemistry and Pharmacology 156 (Paperback, Softcover reprint of hardcover 1st ed. 2006): Susan G.... Reviews of Physiology, Biochemistry and Pharmacology 156 (Paperback, Softcover reprint of hardcover 1st ed. 2006)
Susan G. Amara, Ernst Bamberg, Sergio Grinstein, Steven C Hebert, Reinhard Jahn, …
R2,895 Discovery Miles 28 950 Ships in 10 - 15 working days

Gastric acid plays a primary role in digestion as well as in the sterilization of food and water. Gastric juice contains the most concentrated physiological acid solution (pH~1) as a result + - of H and Cl ion secretion [hydrochloric acid (HCl) production] by parietal cells in the oxyntic mucosa of the stomach. The combined output of the parietal cells leads to the sec- tion of 1-2 l of HCl at a concentration of 150-160 mmol/l into the interior of the stomach. In order to facilitate the production of acid, the parietal cell relies on the generation of a high + concentration of H ions that are transported into the lumen of the gland. This process is fa- + + cilitated by activation of the gastric H ,K -ATPase, which translocates to the apical pole of + - the parietal cell. K as well as ATP hydrolysis and Cl all play critical roles in the activation + + of gastric H ,K -ATPase and are essential for the functioning of the enzyme (Reenstra and Forte 1990). This review will examine the classical proteins that have been linked to acid secretion as well as some recently identi?ed proteins that may modulate gastric acid secretion, in - dition we discuss the known secretagogues, and their receptors including a new receptor, which upon stimulation can lead to acid secretion.

Reviews of Physiology, Biochemistry and Pharmacology 155 (Paperback, Softcover reprint of hardcover 1st ed. 2005): Susan G.... Reviews of Physiology, Biochemistry and Pharmacology 155 (Paperback, Softcover reprint of hardcover 1st ed. 2005)
Susan G. Amara, Ernst Bamberg, Sergio Grinstein, Steven C Hebert, Reinhard Jahn, …
R2,891 Discovery Miles 28 910 Ships in 10 - 15 working days

The eukaryotic translation machinery must recognize the site on a messenger RNA (mRNA) where decoding should begin and where it should end. The selection of the translation start site is generally given by the ?rst AUG codon encoding the amino acid methionine. D- ing initiation soluble translation initiation factors (eukaryotic translation initiation factors [eIFs] in eukaryotes and prokaryotic translation initiation factors [IFs] in prokaryotes) bind the mRNA, deliver the initiator Met-tRNA, and assemble to form a complete 80S ribosome from the 40S and 60S subunits. By progressing along the mRNA in the 5 -to-3 direction the ribosome decodes the information and translates it into the polypeptide chain. During this process, repeated delivery of amino-acyl tRNA (aa-tRNA) to the ribosome, peptide bond formation, movement of the mRNA, and the growing peptidyl-tRNA is mediated by both soluble elongation factors (eukaryotic translation elongation factors [eEFs] in euka- otes and prokaryotic translation elongation factors [EFs] in prokaryotes) and the activity of the ribosome. The ?nal step in the translation process occurs when one of the three t- mination codons occupies the ribosomal A-site. Translation comes to an end and soluble release factors (eukaryotic translation termination factors [eRFs] in eukaryotes and proka- otic translation termination factors [RFs] in prokaryotes) facilitate hydrolytical release of the polypeptide chain (for recent reviews, see Inge-Vechtomov et al. 2003; Kisselev et al. 2003; Wilson and Nierhaus 2003; Kapp and Lorsch 2004).

Reviews of Physiology, Biochemistry and Pharmacology 156 (Hardcover, 2006 ed.): Susan G. Amara, Ernst Bamberg, Sergio... Reviews of Physiology, Biochemistry and Pharmacology 156 (Hardcover, 2006 ed.)
Susan G. Amara, Ernst Bamberg, Sergio Grinstein, Steven C Hebert, Reinhard Jahn, …
R2,928 Discovery Miles 29 280 Ships in 10 - 15 working days

Gastric acid plays a primary role in digestion as well as in the sterilization of food and water. Gastric juice contains the most concentrated physiological acid solution (pH~1) as a result + - of H and Cl ion secretion [hydrochloric acid (HCl) production] by parietal cells in the oxyntic mucosa of the stomach. The combined output of the parietal cells leads to the sec- tion of 1-2 l of HCl at a concentration of 150-160 mmol/l into the interior of the stomach. In order to facilitate the production of acid, the parietal cell relies on the generation of a high + concentration of H ions that are transported into the lumen of the gland. This process is fa- + + cilitated by activation of the gastric H ,K -ATPase, which translocates to the apical pole of + - the parietal cell. K as well as ATP hydrolysis and Cl all play critical roles in the activation + + of gastric H ,K -ATPase and are essential for the functioning of the enzyme (Reenstra and Forte 1990). This review will examine the classical proteins that have been linked to acid secretion as well as some recently identi?ed proteins that may modulate gastric acid secretion, in - dition we discuss the known secretagogues, and their receptors including a new receptor, which upon stimulation can lead to acid secretion.

Reviews of Physiology, Biochemistry and Pharmacology 155 (Hardcover, 2005 ed.): Susan G. Amara, Ernst Bamberg, Sergio... Reviews of Physiology, Biochemistry and Pharmacology 155 (Hardcover, 2005 ed.)
Susan G. Amara, Ernst Bamberg, Sergio Grinstein, Steven C Hebert, Reinhard Jahn, …
R2,929 Discovery Miles 29 290 Ships in 10 - 15 working days

The eukaryotic translation machinery must recognize the site on a messenger RNA (mRNA) where decoding should begin and where it should end. The selection of the translation start site is generally given by the ?rst AUG codon encoding the amino acid methionine. D- ing initiation soluble translation initiation factors (eukaryotic translation initiation factors [eIFs] in eukaryotes and prokaryotic translation initiation factors [IFs] in prokaryotes) bind the mRNA, deliver the initiator Met-tRNA, and assemble to form a complete 80S ribosome from the 40S and 60S subunits. By progressing along the mRNA in the 5 -to-3 direction the ribosome decodes the information and translates it into the polypeptide chain. During this process, repeated delivery of amino-acyl tRNA (aa-tRNA) to the ribosome, peptide bond formation, movement of the mRNA, and the growing peptidyl-tRNA is mediated by both soluble elongation factors (eukaryotic translation elongation factors [eEFs] in euka- otes and prokaryotic translation elongation factors [EFs] in prokaryotes) and the activity of the ribosome. The ?nal step in the translation process occurs when one of the three t- mination codons occupies the ribosomal A-site. Translation comes to an end and soluble release factors (eukaryotic translation termination factors [eRFs] in eukaryotes and proka- otic translation termination factors [RFs] in prokaryotes) facilitate hydrolytical release of the polypeptide chain (for recent reviews, see Inge-Vechtomov et al. 2003; Kisselev et al. 2003; Wilson and Nierhaus 2003; Kapp and Lorsch 2004).

Reviews of Physiology, Biochemistry and Pharmacology 151 (Hardcover, 2004 ed.): Susan G. Amara, Ernst Bamberg, H. Grunicke,... Reviews of Physiology, Biochemistry and Pharmacology 151 (Hardcover, 2004 ed.)
Susan G. Amara, Ernst Bamberg, H. Grunicke, Reinhard Jahn, W.J. Lederer, …
R2,941 Discovery Miles 29 410 Ships in 10 - 15 working days

H. Wegele, L. M ller, and J. Buchner: Hsp70 and Hsp90 A Relay Team for Protein Folding

R. Sch lein: The Early Stages of the Intracellular Transport of Membrane Proteins: Clinical and Pharmacological Implications

L. Schild: The Epithelial Sodium Channel: From Molecule to Disease

Reviews of Physiology, Biochemistry and Pharmacology 149 (Hardcover, 2004 ed.): S.G. Amara, E. Bamberg, M.P. Blaustein, H.... Reviews of Physiology, Biochemistry and Pharmacology 149 (Hardcover, 2004 ed.)
S.G. Amara, E. Bamberg, M.P. Blaustein, H. Grunicke, R. Jahn, …
R4,467 Discovery Miles 44 670 Ships in 10 - 15 working days

D. Kamimura, K. Ishihara, T. Hirano: IL-6 Signal Transduction and its Physiological Roles: The Signal Orchestration Model

M. Tanaka and A. Miyajima: Oncostatin M, a Multifunctional Cytokine

G.-J. van de Geijn, L.H.J. Aarts, S.J. Erkeland, J. Prasher, and I.P. Touw: Granulocyte Colony-Stimulating Factor and its Receptor in Normal Hematopoietic Cell Development and Myeloid Disease

T. Hanada, I. Kinjyo, K. Inagaki-Ohara and A. Yoshimura: Negative Regulation of Cytokine Signaling by CES/SOCS Family Proteins and Their Roles in Inflammatory Diseases

J. Kalesnikoff, L.M. Sly, M.R. Hughes, T. B chse, M.J. Rauh, L.-P. Cao, V. Lam, A. Mui, M. Huber, and G. Krystal: The Role of SHIP in Cytokine-Induced Signaling

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Call The Midwife - Season 10
Jenny Agutter, Linda Bassett, … DVD R209 Discovery Miles 2 090
Queen Of Me
Shania Twain CD R195 Discovery Miles 1 950
Gotcha Digital-Midsize 30 M-WR Ladies…
R250 R198 Discovery Miles 1 980
Multi Colour Animal Print Neckerchief
R119 Discovery Miles 1 190
Strontium Technology AMMO USB 3.1 flash…
R76 R72 Discovery Miles 720
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
Conforming Bandage
R3 Discovery Miles 30
2-Tier Monitor Stand And Desk Organizer…
R605 Discovery Miles 6 050
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840

 

Partners